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1.0 Introduction 
	
1.1 Purpose 
 
This document describes the algorithms that will be used to calibrate the lidar backscatter 
profiles acquired by the CATS (Cloud-Aerosol Transport System) instrument flown 
aboard the International Space Station (ISS). The outputs of these algorithms are Level 1 
data, consisting of attenuated backscatter coefficient profiles for the two channels (532 
and 1064 nm) along with information on the uncertainties in these products. The Level 2 
algorithms to produce geophysical parameters such as layer heights and optical depths 
use the Level 1 data. In addition, calibration files are generated that track the calibration 
constants that are derived during Level 1 processing. The data used by the Level 1 
processing are geolocated prior to calibration. 
 
1.2 Revision History 
 

Issue Date Release 
Number Description Lead Author Sections 

Affected 
06/12/15 1.1 Initial Release John Yorks 1,2,3 
02/26/16 1.2 Level 2 Release John Yorks 1 - 5 

          
 
1.3 CATS Mission Overview 
 
The Cloud-Aerosol Transport System (CATS), launched on 10 January 2015, is a lidar 
remote sensing instrument that provides range-resolved profile measurements of 
atmospheric aerosols and clouds. Data from CATS is used to derive properties of 
cloud/aerosol layers including:  layer height, layer thickness, backscatter, optical depth, 
extinction, and depolarization-based discrimination of particle type.  The instrument is 
located on the Japanese Experiment Module – Exposed Facility (JEM-EF) on the 
International Space Station (ISS). The ISS orbit is a 51-degree inclination orbit at an 
altitude of about 405 km. This orbit provides more comprehensive coverage of the tropics 
and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat 
cycle.  CATS is intended to operate on-orbit for at least six months, and up to three years. 
The CATS payload is designed to provide a combination of long-term operational 
science, in-space technology demonstration, and technology risk reduction for future 
Earth Science missions.   
 
The measurements of atmospheric clouds and aerosols provided by the CATS payload 
are used for three main science objectives. 1) One important aspect of the CATS on-orbit 
science is to provide real-time observations of aerosol vertical distribution as inputs to 
global models. The vertical profile information obtained by CATS, particularly at 
multiple wavelengths and with depolarization information, provides height location of 
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cloud and aerosol layers, as well as information on particle size and shape. 2) Another 
important aspect of the CATS on-orbit science is to extend the space-based lidar record 
for continuity in the lidar climate observations. The CATS instrument provides 
measurements of cloud and aerosol profiles similar to CALIPSO, filling in the data gap, 
so this information can continually be used to improve climate models and our 
understanding of the Earth system and climate feedback processes. 3) Finally, CATS 
advances technology in support of future space-based lidar mission development by 
demonstrating the ability to retrieve vertical profiles using a high rep-rate laser and 
photon counting detection, as well as the testing of component for the High Spectral 
Resolution Lidar (HSRL) technique and 355 nm wavelength. 
 

 
Figure 1.1 CATS three main Science Modes for operation, with details of each mode’s capabilities and 
operational status. 

 
To meet these three science goals, CATS operates in three different modes using four 
instantaneous fields of view (IFOV) as shown in Figure 1.1: 

• Mode 7.1: Multi-beam backscatter detection at 1064 and 532 nm, with 
depolarization measurement at both wavelengths. The laser output is split into 
two transmit beams, one aimed 0.5º to the left and one 0.5º to the right, effectively 
making two tracks separated by 7 km (~4.3 mi) at Earth’s surface. This 
operational mode can no longer be used due to a failure in laser 1 electronics. 

• Mode 7.2: Demonstration of HSRL aerosol measurements. This mode was 
designed to use the injection-seeded laser operating at 1064 and 532 nm to 
demonstrate a high spectral resolution measurement using the 532-nm 
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wavelength. However, this mode has been limited to 1064 nm backscatter and 
depolarization ratio because issues with stabilizing the frequency of laser 2 
prevent collection of science quality HSRL data. 

• Mode 7.3: Demonstration of 355-nm profiling. This mode was designed to use 
the injection-seeded laser operating at 1064, 532, and 355 nm to demonstrate 355-
nm laser performance. Unfortunately, due to an unexpected failure in the laser 
optical path, CATS will not collect data in this mode. 

 
 

1.4 CATS Data Product Levels 
 
The CATS Level 1B and 2 data processing algorithms rely heavily on heritage from 
existing airborne and space-based lidar systems, such as the Cloud Physics Lidar (CPL, 
McGill et al. 2002), the Airborne Cloud-Aerosol Transport System (ACATS, Yorks et al. 
2014), and the Cloud-Aerosol Lidar Infrared Pathfinder Spaceborne Observations 
(CALIPSO) satellite (Winker et al. 2009). The HSRL data processing algorithms will be 
very similar to those used for the ACATS instrument, with much longer turnaround times 
expected. 
	
The data products generated from the CATS measurements are produced according to a 
protocol that is similar to that established by NASA’s Earth Observing System (EOS), 
but are not required to meet any specific protocol. The CATS data product levels are 
defined as follows: 
 

• Level 0: reconstructed, unprocessed instrument data at raw resolutions (i.e., the 
downlinked raw photon counts from the CATS instrument). Any and all 
communications artifacts (e.g. synchronization of packets, communications 
headers, duplicate or missing data) are removed in the L0 process.   

• Level 1A: Level 0 data that is time-referenced, geo-located, corrected for detector 
nonlinearity and instrument artifacts, normalized to laser energy, and annotated 
with ancillary information. The CATS Level 1A data (relative normalized 
backscatter) is an internal product only and is not distributed. 

• Level 1B: Level 1A data that have been calibrated, annotated with ancillary 
meteorological data, and processed to sensor units. The CATS Level 1B data 
(attenuated total backscatter and depolarization ratio) is archived as Level 1 data. 

• Level 2: Geophysical parameters derived from Level 1 data, such as the vertical 
feature mask, profiles of cloud and aerosol properties (i.e. extinction, particle 
backscatter), and layer-integrated parameters (i.e. lidar ratio, optical depth). There 
will be two CATS Level 2 products: 

o CATS Heritage L2: L1B files that are run through the CALIPSO L2 
algorithms to provide continuity in the algorithms used for the lidar 
climate record. 

o CATS Operational L2: L1B files that are run through the new 
operational CATS L2 algorithms, which will include new capabilities that 
correspond to new instrument technology. 
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2.0 Instrument Description 
 
The CATS payload is based on existing instrumentation built and operated on the high-
altitude NASA ER-2 aircraft. The instrument consists of 2 high repetition rate Nd:YVO4 
lasers operating at three wavelengths (1064, 532, and 355 nm) that generate signal 
photons, a receiver subsystem with a 60 cm diameter telescope to collect photons that 
backscatter from the atmosphere, and a data system to provide timing of the return 
photon events.  The CATS instrument parameters are given in more detail in Table 2.1. 
 
2.1 Transmitter Subsystems 
 
The CATS laser transmitter that will be used in Mode 7.1, referred to as Laser 1, gets its 
heritage from the Cloud Physics Lidar (CPL; McGill et al. 2002) instrument. It is a Nd: 
YVO4 laser with a repetition rate of 5000 Hz and an output energy of about 1 mJ per 
pulse at 532 and 1064 nm. An image of the laser 1 bench assembly is shown in Figure 
2.1. 
 

Table 2.1. CATS Instrument Parameters. 
Laser 1 Type Nd: YVO4 
Laser 1 Wavelengths 532, 1064 nm 
Laser 1 Rep. Rate 5000 Hz 
Laser 1 Output Energy ~1 mJ/pulse 
Laser 2 Type Nd: YVO4, seeded 
Laser 2 Wavelengths 355, 532, 1064 nm 
Laser 2 Rep. Rate 4000 Hz 
Laser 2 Output Energy ~2 mJ/pulse 
Telescope Diameter 60 cm 
View Angle 0.5 degrees 
Telescope FOV 110 microradians 

 
The frequency characteristics of pulsed lasers have recently been advanced due to the 
development of direct detection Doppler lidars and HSRLs. These techniques impose 
further requirements compared to standard backscatter lidars, such as lasers that are 
single frequency on a single pulse basis and more stable in time (central frequency drift 
of less than 1 MHz per minute). An injection-seeded, pulsed Nd: YVO4 laser was 
developed for CATS, with heritage from a similar laser transmitter built for the Airborne 
Cloud-Aerosol Transport System (ACATS: Yorks et al. 2014), that achieves these 
frequency characteristics (Hovis et al. 2004). This laser, referred to as Laser 2 and shown 
in Figure 2.2, provides a narrow wavelength distribution suitable for resolving the small 
frequency shifts due to the Doppler effect.  The laser operates at an output power of about 
2 mJ per pulse and repetition rate of 4000 Hz. This seeded laser also contains an external 
frequency-tripling module to provide output at 355 nm for Mode 7.3 that should failure 
occur, will not negatively impact operations at 532 and 1064 nm. 
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Figure 2.1 The CATS laser 1 bench assembly for 532 and 1064 nm operation. 

 
 
 

 
Figure 2.2 The CATS laser 2 bench assembly with the external frequency-tripling module (orange). 

 
 
2.2 Receiver Subsystems 
 
CATS employs a 60 cm beryllium telescope that has a 110 microradian field of view, 
allowing for a 0.5 degree view angle. The telescope, shown in Figure 2.3, is also fiber-
coupled to the detector boxes to provide greatest flexibility. CATS contains four detector 
boxes.  Beam splitters are used to measure the parallel and perpendicular polarized return 
in all four detector boxes. The first two detector boxes are identical and are used for the 
LFOV and RFOV of Mode 7.1. Each of these detector boxes contain six detector 
channels for the following detection: 

• 532 nm Parallel Backscatter (2) 
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• 532 nm Perpendicular Backscatter (2) 
• 1064 nm Parallel Backscatter  
• 1064 nm Perpendicular Backscatter 

A third and similar detector box is used for Mode 7.3 that contains the same 6 channels as 
the Mode 7.1 detector boxes, plus 1 additional 355 nm Total Backscatter channel for a 
total of 7 channels. These three detector boxes are shown in Figure 2.4. The final detector 
box, referred to as the HSRL detector box, contains 12 detector channels: 10 designated 
as 532 nm HSRL channels, one 1064 nm Parallel and one 1064 nm Perpendicular 
backscatter channel. 
 
The heart of the CATS HSRL detector box is an etalon that provides the spectral 
resolution needed for the HSRL measurement. Backscattered light collected by the 
telescope is passed through the etalon and an image of the etalon fringe pattern is created.  
A bandpass filter is used in tandem with the etalon to reject background sunlight, 
permitting daytime operation.  The optical gap of the etalon is 3 cm with a plate 
reflectivity of 90%. It is critical to maintain the symmetry and shape of the etalon fringe 
pattern to avoid uncertainty in the measurement. A digital etalon controller was 
developed by Michigan Aerospace Corporation in which piezoelectric actuators control 
the etalon electronics to position and maintain the plate parallelism. A holographic circle-
to-point converter optic (McGill et al. 1997c; McGill and Rallison 2001) is placed in the 
focal plane of the HSRL receiver to provide the spectral detection. The circle-to-point 
converter simplifies hardware requirements, improves efficiency of measuring the 
spectral content in the fringe pattern, and allows CATS to utilize photon-counting 
detection.  The holographic optic is coupled to the 10 individual 532 nm detectors, each 
representing a small wavelength interval. 
 

 
Figure 2.3 The CATS 60 cm beryllium telescope prior to full instrument assembly. 
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Figure 2.4 The three standard backscatter detector boxes for Modes 7.1 (LSFOV and RSFOV) and 7.3. 

 
 
2.3 Data Acquisition and Signal Processing 
 
During Level 0 processing, data are time-sorted and corrected for communication 
artifacts (i.e. duplicate or missing data). Raw CATS data, with 60 m (Mode 7.1; 78 m for 
Mode 7.2) vertical resolution and 350 m horizontal resolution, are received from the ISS 
in real-time during acquisition-of-signal (AOS) periods. During loss-of-signal (LOS) 
periods, which can range from 1 minute to 2 hours, data are not received real-time. CATS 
data are recorded on-board the ISS during LOS periods then transmitted to the ground 
during subsequent AOS periods. Due to the LOS periods, data are collected at the CATS 
ground station in 3-hour segments to ensure all data can be sorted properly. Level 0 files 
are created once two 3-hour segments have been obtained. Every time a new segment is 
collected, the previous segment is processed into Level 0 files using the new segment to 
fill in data gaps caused by LOS periods. Thus, Level 0 files are produced every 6 hours. 
The ISS time data, which is reported in the CATS Level 0 files, is corrected for drift 
using a special ISS data stream during Level 0 processing. 
 
Level 0 files are partitioned into either day or night “granule” files based on two criteria. 
These criteria are: 
 

1) The z-component of the solar line-of-sight unit vector reported in the 
ISS Broadcast Ancillary Data (BAD) must meet a threshold value of 
greater than 0.0 in order for a file to be deemed night. A value less than 
0.0 would be classified as day.  

2) The solar background counts for the given profile must cross a 
threshold value of 6 counts to be classified as day. A profile is 
classified as night if the solar background counts are less than 6.  
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A new granule file is produced when both criteria agree for a given profile and these 
granules are then labeled correspondingly as either a “day” file or “night” file. It should 
be noted that there are occasions when the 6-hour sorting window is not large enough to 
fill in the data gaps caused by out-of-sequence data. In this scenario, two granules may be 
produced, with 4.5 minutes between the start and end times of the granules, instead of 
one larger granule. 

Some CATS Version 2.06 files (also known as granules) are shorter than the normal 
approximately 45 minute long files. These files can be as short as 5 minutes of data. 
There are two explanations for granules sometimes having short lengths. 
 

1) Sometimes data capture begins or ends near the cutoff criteria for granules (i.e. 
begins at the end of the daytime/night portion of the orbit, ends at the beginning of 
the granule). 
 
2) A more complex reason is that due to a communications defect between the CATS 
on-board data system and ISS navigation system, the data capture time in the CATS 
raw data occasionally deviates from the true time. This occurs randomly and for 
various durations of time in sequential data records. The way the CATS L0 code 
processes this phenomenon is by analyzing sequencing numbers to determine if the 
time is valid. If the time is deemed invalid, the code waits until the sequencing 
number and data capture time are both in sync for a certain amount of time before 
producing granules again. This introduces gaps in the data. Once the gaps get big 
enough to cross a threshold, the code breaks them up into separate files even if they 
belong to the same "day" or "night."  

 
3.0 Overview of Level 1 Algorithms 
 
3.1 Normalized Relative Backscatter 
 
The CATS Level 1A data is referred to as the Normalized Relative Backscatter (NRB) 
and is an internal product only that is not distributed. The NRB data is Level 0 data that is 
geolocated, corrected for detector nonlinearity, range, and the folding of molecular signal 
from the atmosphere above, normalized to laser energy, and annotated with ancillary 
information. The ancillary information included in the NRB data is the Broadcast 
Ancillary Data (BAD) from the ISS that describes the environment in which a payload is 
operating. The BAD is sent at a rate of 10 Hz and includes the roll, pitch and yaw of the 
ISS, the quaternion, and the CTRS position information. Since the CATS laser points off-
nadir 0.5 degrees in any of the three science modes, and has multiple beams in Mode 7.1, 
the geolocation of the CATS laser beam is computed for each FOV using the BAD and 
the CATS relative angles. More information on the algorithm to determine the 
geolocation of each CATS FOV is provided in section 3.1.1. Once the data is geo-
located, the raw photon counts are corrected for detector nonlinearity (D), as described in 
section 3.1.2. The Normalized Relative Backscatter (β’

NR) for each wavelength and range 
bin is then computed using the equation: 
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β 'NR (r) =
{[N(r)*D]− NB}r

2

E               Eq. 3.1 

where r is the range at each range bin and E is the laser energy as measured by energy 
monitors installed on the CATS instrument. The solar background photon counts (NB) is 
estimated by averaging the signal below the earth’s surface. All the products reported in 
the CATS L1A data products are used as input to the CATS L1B data products. 
 
3.1.1 Geolocation of CATS Laser Beams 
 
Knowledge of the location of the CATS laser spot on the earth is required for the useful 
analysis of the CATS backscatter data. The location of the CATS laser spots can be 
calculated from the position, velocity, and attitude information found in the ISS 
Broadcast Ancillary Data (BAD) together with the known angular offset of the laser line-
of-site (LOS) vector from the instrument’s nadir vector. The computation requires a 
series of coordinate transformations and rotations to find the geodetic latitude and 
longitude of the laser spot at the height of the Digital Elevation Model (DEM).   
 
The CATS algorithm uses four coordinate systems in the computation of the laser spot 
location, which include:  

1) The CATS instrument body (LOS) reference frame 
2) The local vertical local horizontal (LVLH) reference frame 
3) The Conventional Terrestrial or geocentric (CTRS, x,y,z) reference frame 
4) The geodetic reference frame (longitude, latitude, altitude).   

Because angular offsets between the ISS body reference system and the CATS body 
reference system are unknown, the two systems are considered to be the same. The 
difference is assumed to be small so the BAD data that is referenced to the ISS body is 
considered to be reference to the CATS body. 
 
The ISS body position data  (𝑥!"" ,𝑦!!!, 𝑧!"" ) and velocity data ( 𝑣!"##, 𝑣!"##, 𝑣!"##) are 
contained in the ISS BAD.  These vectors can be used to construct the LVLH unit vector 
𝑀!!, along with the following information. 

 
1) The forward velocity unit vector of the ISS 
2) The nadir unit vector 
3) The cross product of the forward velocity unit vector of the ISS and the nadir unit 

vector for a right handed coordinate system 
4) The geocentric unit vector of the ISS 
5) The speed and distance from the earth’s center, respectively 

The ISS attitude data is also included in the BAD in the form of quaternion components 
(𝑞!"##, 𝑞!"##, 𝑞!"##, 𝑞!"##), which are the scalar and x, y, z vector quaternion components 
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referenced to the LVLH reference frame. These quaternion components can be converted 
to the yaw, pitch, and roll (ay, ap, ar). Yaw, pitch, and roll can be used to construct a 
matrix to transform the laser LOS vector into the LVLH reference system. The matrix is:  

 

 𝑀!"# =
𝐶!𝐶! −𝑆!𝐶! − 𝐶!𝑆!𝑆! 𝑆!𝑆!
𝑆!𝐶! 𝐶!𝐶! − 𝑆!𝑆!𝑆! −𝐶!𝑆! − 𝑆!𝑆!𝐶!
𝑆! 𝐶!𝑆! 𝐶!𝐶!

     Eq. 3.2 

 
where C and S represent functions cosine and sine and subscripts y, p, and r refer to yaw, 
pitch, and roll, respectively. By using the LVLH unit vector and equation 3.2, the CATS 
laser pulse location at a sampling bin in geodetic coordinates can be found using the 
following steps.  

 
1) Compute geodetic coordinates of ISS (atgd  angd  hgd)=V(xiss, yiss,ziss), where (atgd  

angd  hgd)= geodetic latitude, longitude, and altitude of the ISS and V(x,y,z) is the 
Vermeille transformation from geocentric to geodetic coordinates (Vermeille 
2002). 

2) Define the LOS vector for the appropriate CATS laser pointing direction, fore, aft, 
left, or right. The CATS body reference system is defined by positive x-axis along 
the forward direction, positive y-axis to the left, and positive z-axis toward the 
earth. A LOS vector is defined in spherical coordinates by the rotation about the z-
axis (f), angle from the x-y plane (q) and range from CATS (RB). For all four 
pointing directions, q=(p/2 - 0.008) radians. For fore, aft, left, and right 
f=0, p, p/2, and 3p/2, respectively. So, in Cartesian coordinates, the laser LOS 
vector is: 

 𝑥!"# 𝑦!"# 𝑧!"# = 𝑅! cos𝜙 cos𝜃 𝑅! sin𝜙 cos𝜃 𝑅! sin𝜃   Eq. 3.3 
 

3) Use Mypr from equation 3.X to transform the laser LOS vector to LVLH reference 
frame. 

4) Use the LVLH unit vector (Mvh) to convert 𝑥!"! 𝑦!"! 𝑧!"!  to the geocentric 
reference frame. This conversion results from the following equations.  

5) Compute the geocentric coordinates of the laser spot by adding Cartesian 
coordinates in the geocentric reference to the ISS coordinates. 

6) Convert the laser spot coordinates to geodetic reference frame by using 
Vermeille’s transformation.  

7) Compute the CATS laser LOS vector in the geodetic reference frame for a series 
of range bins Rbi that will positively pass through the altitude of the local DEM. 
Select the location where z-component of the CATS laser LOS vector most closely 
matches the altitude reported by the DEM. The latitude and longitude of that bin 
will the latitude and longitude of the laser spot. 
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The DEM values used are average values for 1 km by 1km grid boxes. This will lead to 
some discrepancies in the latitude and longitude of the CATS laser spot in mountainous 
terrain. To verify the accuracy of the CATS laserspot location algorithm, spot location 
results were compared with those derived from an algorithm presented by J. R. Ridgway 
in the paper “Analysis of Satellite Laser Altimetry Range Measurements Over Land 
Topography Using Generalized Attitude Parameter Extraction”, published in the ISPRS 
(International Society for Photogrammetry and Remote Sensing) proceedings. These 
comparisons revealed errors in the CATS algorithm used in version 2.04.  
To correct these errors the following changes were made to the CATS algorithm: 

1. Signs on elements in the roll and pitch LVLH (local horizontal local vertical) 
transformation matrix were changed (from positive to negative and vice versa). 

2. The order of the matrix multiplication to transform the laser line-of-sight vector to 
LVLH was reversed. 

After the changes were made, the test laser spot locations computed by the CATS 
footprint geolocation algorithm and the Ridgeway algorithm were the same to within 2.0 
meters, demonstrating that the ISS pointing angles are being used properly. Although the 
updated algorithm in version 2.05 is an improvement, there is still a bias in the 
geolocation. Over rugged terrain, differences are observed between the DEM and lidar 
signal. These differences are attributed to two factors.  
 

1) CATS is mounted on the Japanese Experiment Module-Exposed Facility (JEM-
EF), which is a distant extremity of the ISS. It is reasonable to assume that an 
angular offset exists between the ISS central body, where the BAD are measured, 
and the CATS local reference system on the JEM-EF. However, the angle 
between the ISS point of reference for the position data and CATS instrument is 
unknown and assumed to be zero in V2.05. This assumption is likely a main 
source of error in the CATS V2.05 geolocation algorithm.  

2) A communications defect in which a time lag (1-2 seconds in some cases) from 
when the ISS position data is collected to when it is included into the CATS data 
stream occurs. Statistically this time lag is found to be 1 second in 80% of CATS 
data profiles, so the L0 data is corrected this artifact by adjusting the ISS position 
data by 1 second. However, the	 time lag is not constant so instances when the 
time lag is not 1 second do occur and users should be careful when analyzing 
surface returns over rugged terrain.  
 

The angular offset between the ISS point of reference for the position data and CATS 
instrument was determined using statistical analysis of the differences between the 
surface altitude detected using the CATS backscatter data and the DEM of the latitude 
and longitude computed using the V2.05 algorithm. These differences can be reduced or 
eliminated by applying a constant angular correction to the yaw, pitch, and roll 
parameters that are determined from the BAD quaternion values.  In each scene, 
systematic incremental adjustments were made to the yaw, pitch, and roll until the 
surface height values agree. The offsets to the ISS yaw and roll were constant for the 
many scenes that were tested but the pitch offset varied. An empirical distribution 
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function of the pitch offsets was derived from many cases and the mean and median were 
determined from the distribution. The mean pitch offset was used as the correction. 
 
From this analysis, the angles between the ISS point of reference for the position data and 
CATS instrument was determined as 2.00 degrees for yaw, -0.50 degrees for roll, and -
0.25 for pitch. These “offset” angles have been incorporated into the V2.06 algorithms. 
Figure 3.1 shows the CATS attenuated total backscatter at 1064 nm for 19 Aug. 2015 
(top panel) as the instrument passed over the continent of Africa (ISS track shown in blue 
in bottom panel, with the red track indicating the scene plotted). The DEM surface 
altitude is overlaid (green) for the CATS footprint geolocation computed using the V2.06 
algorithm in the top panel, which shows very good agreement with the CATS attenuated 
total backscatter. The variation in the pitch correction could be caused by the uncorrected 
tag lag, which can shift the laser spot geolocation compared to the CATS backscatter data 
along the track of the ISS. Future studies will be performed to correct the time lag issue 
in post-processing. 

 
Figure 3.1. Comparison of the CATS attenuated total backscatter at 1064 (top panel) shows that the surface 
detected by the instrument (white colors) agrees favorably with the DEM values (green). 
 
3.1.2 Detector Nonlinearity 
 
The measured CATS signal can become erroneously low when measuring targets that 
strongly backscatter light due to detector dead time and must be compensated for. All 
lidar systems that employ photon-counting detection experience this effect, which is a 
limitation on the number of photons that can be counted in a given time interval. For 
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CATS, highly reflective features, such as bright surfaces (desert, sea ice) and water 
clouds push the detector into a nonlinear counting region. A typical photon counting 
detector, such as the ones employed in CATS, has a discriminator dead time of 28 to 30 
ns for a discriminator maximum count rate on the order of 30 MHz. 
 
The nonlinear effects for this type of detector can be quantified by a detector dead time 
coefficient. This coefficient represents the fact that only one photon event can be counted 
at once, and the detector system has a certain time delta, or dead time, before it can count 
another. If the mean time between events is much greater than the dead time, then it can 
be shown that 

Na,i =
Nm,i

1− Nm,iτ
Δt

#

$
%

&

'
(

                 Eq. 3.4 

where Nm,i is the measured counts on channel i, Na,i  is the counts that would be sensed if 
the detector were completely linear, Δt is the total integration time, and τ is the dead time.  
These nonlinear effects can be significantly reduced by applying Eq. 3.4 to the measured 
signal, which allows for a reasonable correction of the atmospheric data bins. The CATS 
detectors rarely experience count rates higher than 35 MHz in atmospheric bins below 28 
km. Therefore, the detector dead time coefficient is less than 1.10 for 99.0% of 
atmospheric bins. An example of the CATS deadtime correction factors, as a function of 
photon counts, are shown in Figure 3.2 for detector 1 (RFOV 1064 nm parallel channel). 
 

 
Figure 3.2. The CATS deadtime correction factors for RFOV 1064 nm parallel channel detector as a 
function of photon counts. 
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3.1.3 Correction for Molecular Folding 
 
The raw photon data captured by CATS at range r (where r < 28 km) will have 
contributions from atmospheric scattering at heights z+Nx km, where N=1,2,3, etc. and x 
= 30 for operating mode 7.1 and 37.5 for mode 7.2. This effect is caused by the high 
repetition rate of the CATS lasers discussed in section 2.2. In practice, only N=1 is 
important as scattering above 60 km is negligible. The folding of molecular scattering is 
important to remove because accurate background cannot be calculated without doing so. 
Background is computed from the 2 km of data below the ground. However, the data in 
this region contains molecular scattering from the 28 to 30 km region of the atmosphere. 
If this signal is not removed, it becomes part of the calculated background. If this 
background is subtracted from each bin of the profile, it will remove most of the photon 
counts from true molecular scattering in the calibration zone (23-27 km altitude). This 
will render accurate calibration from the molecular signal impossible. 
 
The molecular contribution to the measured photon count can be computed from equation 
3.3: 

Nm (r,λ) =
Ne(λ)
r2

βm (r,λ)ΔrAtTm
2 (r,λ)To

2 (r)QeToptNaR(r,λ)α(λ)  Eq. 3.5 

Where Ne is the number of photons transmitted by CATS which is defined by the laser 
energy (E) as: 
 
Ne =

E(λ)λ
hc           Eq. 3.6 

Where λ is the laser wavelength (532 nm), h is the Planck constant and c is the speed of 
light. The other terms used in equation 3.5 above are: 
 
r – The range from the satellite to the height z (in m).  
βm(r) – the molecular backscatter cross section at range r (m-1 sr-1).  
Δr – the bin size in meters (60 m) 
At – Area of telescope (m, effective) 
Tm(r) – Molecular atmospheric transmission from top of atmosphere to range r. 
To(r) – Ozone transmission: top of atmosphere to range r. 
Qe – Quantum efficiency of detector 
Topt – Transmission of the receiver system optics 
Na – Number of shots summed (nominally 250) 
R(r) – aerosol scattering ratio 

)(λα - scaling factor 
 
In equation 3.5, α is used to adjust the computed photon count since the exact values of 
quantities like system optical transmission (Topt) and detector quantum efficiency (Qe) are 
not known exactly and moreover, can change with time. The value of α was computed 
empirically by adjusting it until the slope of the average NRB signal (for a granule) above 
20 km matched the slope of the average modeled molecular backscatter, which is derived 
using the technique described in section 3.2.2. It was found that too low of an alpha will 
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produce a slope less than the molecular model, and a value too large will produce too 
large a slope. Further, it was found that alpha varies only slowly with time and requires 
only infrequent tuning. Alpha is computed empirically for each wavelength and each 
field of view. Typical values of alpha range from 0.04 to 0.08 for the 1064 nm channel 
and 0.02 to 0.07 for the 532 nm channel. 
 
Equation 3.5 is used to compute a profile of molecular scattering contribution from 58 
km to 28 km (Nm(r)). From that profile, the molecular scattering contribution (folded 
from above) to the measured CATS photon profile is computed as: 
          
N 'm (r) = Nm (r + x)          Eq. 3.7 
 
Where x = 30 km for operating mode 7.1 and x = 37.5 for operating mode 7.2. For r 
between -2 and 28 km. Then the corrected raw photon count profile is: 
 
!S (r) = S(r)− N 'm (r)          Eq. 3.8 

Where S(r) is the raw photon count profile measured by CATS. Note that this process 
leaves the molecular scattering of the original profile (S(r)) intact.  It only removes the 
molecular scattering folded down from above. The NRB corrected for the molecular 
folding can now be computed as: 
 
𝑁𝑅𝐵′(𝑟) = (𝑆′ 𝑟 − 𝑁B)/𝐸 = 𝐶𝛽(𝑟)𝑇!(𝑟)      Eq. 3.9 
 
For version V2-06 of the CATS L1A and L1B products, an iterative computation of the 
alpha parameter is employed. A few hundred nighttime granules were used to derive a 
relationship between the below ground raw photon count (averaged for the granule) and 
the alpha parameter. This relationship was found to be a linear dependence. In V2-06 
L1A processing this relationship was used to compute an initial value of alpha, which 
was then applied to the entire granule. The average NRB signal profile between 28 and 
20 km is then computed for the granule, as is the average molecular profile. The slope of 
both of these profiles are computed and compared to each other. If the slopes differ by a 
pre-defined threshold, the value of alpha is adjusted and the whole granule is reprocessed. 
Alpha is adjusted based on the sign and magnitude of the slope difference. If, after 
processing the granule again, the slope difference is still greater than the threshold, the 
granule is quarantined (put in a holding directory). In the automated processing of over 
5,000 granules, only about 50 had to be quarantined. For these files, the value of alpha 
will be determined manually to assure alpha is of the appropriate magnitude. 
 
3.2 Calibrated Backscatter  
 
The processing algorithms for Level 1B consist mainly of the backscatter and 
depolarization calibrations. The 532 nm CATS data is calibrated by normalizing the NRB 
signal to the 532 nm molecular backscatter signal in a set calibration region (Russell et al. 
1979, Del Guasta 1998, McGill et al. 2007, Powell et al. 2009). The CATS calibration 
region is 23-27 km, starting 1 km below the top of the CATS data frame (28 km). The 
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aerosol loading in this region is computed using CALIPSO data and applied to the 
calibration. The CATS NRB signal is averaged to 4 minutes at night and 46 minutes 
during daytime operation to reduce uncertainty in the calculation. During nighttime data 
collection, the 1064 nm calibration constant can be computed using an identical approach 
as the 532 nm calculation. However during daytime operation, the 532 and 1064 nm 
signal is often calibrated using a default value derived from historical data or manual 
normalization to the Rayleigh backscatter model. The polarization gain ratio, which 
describes the relative gain between polarization channels, is computed for both 532 and 
1064 using the solar radiation scattered by ice clouds (Liu et al. 2004). 
 
3.2.1 Ozone Transmission 
 
The ozone transmission, T2

o(r), is calculated using ozone mass mixing ratios obtained 
from the GMAO meteorological data set, which contains ozone mass mixing ratios. The 
ozone mass mixing ratios, rO(r) are first converted to column density per kilometer (atm-
cm/km), εO(r), using the following equation: 
 

εO (r) =
rO (r)ρ(r)

2.14148×10−5
                 Eq. 3.10 

 
where r is the range in km, and ρ(r) is the atmospheric density at r and calculated from 
the meteorological data as: 
 

ρ(r) = P(r)
RT (r)

                   Eq. 3.11 

 
The next step is to calculate the ozone transmission term, T2

o(λ), which is computed 
using the following equation: 
 

T 2
O(λ, r) = exp −2cO (λ) εO (r ') dr '

H

r
∫#

$%
&
'(                Eq. 3.12 

 
where cO(λ) is the Chappius ozone absorption coefficient in cm-1 and λ is 532 nm. The 
ozone absorption coefficient is obtained at the correct wavelength from a table compiled 
in Iqbal (1984) using data from Vigroux (1953). The 532 nm Chappius ozone absorption 
coefficient used is 0.065 cm-1. The 1064 nm coefficient is ~0.0 cm-1.  H is nominally 60 
km. 
 
The ozone transmission is then modified to account for the off-nadir angle of the CATS 
laser beam. The off-nadir angle varies by CATS FOV and its computation is detailed in 
section 3.1.1. If θ  is the off-nadir angle of the laser beam, the angle correction to the 
transmission is: 
 

To
2 (λ, r) = To

2 (λ, r)sec(θ ) 		 	 	 	 	 	 											Eq. 3.13 
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The application of the ozone transmission to the CATS calibration method is described in 
section 3.2.5. 
 
3.2.2 Rayleigh Scattering  
 
This section provides a brief introduction to atmospheric molecular scattering as it relates 
to CATS and describes the molecular scattering parameters computed for use in CATS 
data processing. Atmospheric molecular scattering consists of two components. Rayleigh 
scattering is considered elastic scattering from particles that are very small compared to 
the wavelength of the scattered radiation, such as molecules. Vibrational Raman 
scattering has a scattering cross section that is very small compared to Rayleigh 
scattering, so it is neglected when computing the molecular scattering (Bucholtz 1995; 
Bodhaine et al. 1999; She 2001). For lidar applications, the phrases Rayleigh scattering 
and molecular scattering are used as synonyms. The main sources of Rayleigh-scattered 
light are nitrogen and oxygen, since these two gases accounts for about 99% of the 
Earth’s molecular atmosphere. The Rayleigh scattering intensity is related to the 
wavelength of incident radiation (λ) through the relationship λ−4 and dominates 
backscatter signals from elastic backscatter lidars at short laser wavelengths. For elastic 
backscatter lidars such as CATS, the Rayleigh scattering signal is used to normalize the 
total return signal and determine the instrument calibration constant. Additionally, the 
molecular backscatter coefficient (βM) and molecular extinction coefficient (σM) must be 
known to reduce the unknown parameters in the standard lidar equation to two. 
 
The molecular backscatter coefficient is determined from Rayleigh scattering theory 
(Tenti et al. 1974; Young 1981) and is proportional to atmospheric density. Thus, the 
molecular backscatter coefficient can be computed using its relationship to atmospheric 
temperature and pressure, as demonstrated by Collis and Russell (1976), through the 
equation: 

βM =
p
KT

(5.45×10−32 ) λ
550
#

$
%

&

'
(
−4.09

	 	 	 	 	 											Eq. 3.14 

 
where T is the atmospheric temperature in units of Kelvin, p is the atmospheric pressure 
in units of hPa and K is the Boltzmann constant (1.38 x 10-23 J K-1). Furthermore, the 
molecular extinction coefficient (σM) is resolved from the molecular backscatter 
coefficient though the relationship:	 
 

σM = βM
8
3
!

"
#
$

%
&π 	 	 	 	 	 	 	 	 											Eq. 3.15 

 
NASA Goddard Earth Observing System version 5 (GEOS-5) forecasts provided by the 
NASA Global Modeling and Assimilation Office (GMAO, Rienecker et al. 2008) deliver 
a forecast of the atmospheric temperature and pressure profiles for 72 vertical levels (0-
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85 km AGL) at a horizontal resolution of 10 seconds that is subset along the ISS orbit 
track. The temperature and pressure from GMAO are interpolated to the CATS vertical 
bin width of 60 m over a range of 0 to 60 km AMSL to better match the vertical structure 
of the CATS lidar backscatter data. The molecular backscatter and extinction coefficients 
are computed using equations 3.14 and 3.15, respectively. These parameters, along with 
the interpolated temperature, pressure, and other GMAO variables are output in the Level 
1B files. Errors in the forecasted GMAO are estimated to be 0.5 K for profiles of 
temperature (Prive’ et al. 2012) and 1 hPa for surface pressure (Reinecker et al. 2008). 
 
In cases when the parallel-polarized backscatter channel is normalized to the attenuated 
molecular backscatter, the molecular depolarization ratio (δM) must be considered. The 
depolarization ratio is defined and the ratio of perpendicular to parallel backscatter. The 
molecular depolarization ratio for the three CATS wavelengths is given in Table 3.1, as 
provided by the CALIPSO ATBD and Behrendt and Nakamura (2002). These values are 
used to compute an attenuated molecular backscatter for the parallel-polarized light and 
reduce error in the CATS calibration constant when normalizing the parallel channel to 
Rayleigh backscatter. 
 

Table 3.1. CATS molecular depolarization ratios for three operating wavelengths 
λ 	(nm)	 δm	(%)	
355	 1.554	
532	 1.430	
1064	 1.400	

 
3.2.3 Polarization Gain Ratio 
 
Pulsed lasers, such as the ones used in the CATS instrument, naturally produce linearly 
polarized light. Using a beam splitter in the receiver optics, the perpendicular and parallel 
planes of polarization of the backscattered light are measured. The linear volume 
depolarization ratio is defined as the ratio of perpendicular total (Rayleigh plus particle) 
backscatter to parallel total backscatter, and has values between 0.2 and 0.6 for non-
spherical particles such as ice crystals (Sassen and Benson 2001; Yorks et al. 2011a). 
Deriving accurate depolarization ratios from CATS data requires knowledge of the 
relative gain between the perpendicular and parallel channels of the CATS receiver, 
referred to as the polarization gain ratio (PGR). 
 
The CATS operational PGR consists of two terms. The equation for the CATS 
operational PGR is: 
 
 PGROP = PGR1 ×PGR2 		 	 	 	 	 	 											Eq. 3.16 
 
The first term, PGR1, characterizes the relative gain between the perpendicular and 
parallel channels at both the 532 and 1064 nm wavelengths. The second term, PGR2, 
corrects for poor depolarization purity in the 532 nm measurements. 
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The algorithm to compute PGR1 uses the ratio of the parallel to perpendicular solar 
background radiation scattered from dense ice clouds, as outlined by Liu et al. (2004). 
The background light measured by CATS is the scattering of solar radiation by the 
surface, clouds, aerosols, and molecules in the atmosphere. The difference in solar 
background counts between the parallel and perpendicular channels is minimal since the 
solar radiation scattered by dense ice clouds is unpolarized in theory (Liou et al. 2000). 
Dense ice clouds used to compute the first polarization gain ratio term during daytime 
periods only include only the top cloud layers and are identified using four criteria: 

1) Mid-cloud temperature (TM):  TM  < -35 C 
2) 532 nm (mode 7.1) or 1064 nm (mode 7.2) integrated attenuated total 

backscatter (γ 1064):  0.008 < γ 1064 < 0.044 sr-1 
where: 

	 	 	 	 	 	 											Eq. 3.17 

3) 1064 nm layer-integrated depolarization ratio (δλαψ): 0.30 < δλαψ  < 0.80 
where: 

	 	 	 	 	 	 											Eq. 3.18 

4) 532 nm (mode 7.1) or 1064 nm (mode 7.2) optical depth (τ 1064):  τ 1064  > 1.75 
This criteria is actually assessed using the two-way transmission (T2

C) of the 
threshold optical depth, which is computed using the equation 

 	 	 	 	 	 	 	 	 											Eq. 3.19 
and compared to the two-way transmission of the layer (T2

lay) as estimated below: 

	 	 	 	 	 	 	 											Eq. 3.20 
where S is the lidar ratio estimated as 25 sr for dense ice clouds.  

 
The polarization gain ratio can then be derived using the ratios of the parallel and 
perpendicular background signals summed over the entire granule from all profiles within 
the granule file that contain these “dense ice clouds”. Using a similar procedure, Liu et al. 
(2004) found polarization gain ratios for CALIPSO data that compared favorably with the 
values measured onboard by inserting a half-wave plate with its optical axis aligned at 
22.5 degrees to the transmitted laser polarization direction into the optical path of the 
transmitter (Spinhirne et al. 1982) or the receiver (McGill et al. 2002).  
 
The CATS depolarization purity at 1064 nm was measured in the lab at GSFC as greater 
than 150:1 before launch. However, the depolarization purity at 532 nm was measured at 
about 7:1. To improve the accuracy of CATS 532 nm depolarization measurements, this 
data must be corrected for this poor depolarization purity at 532 nm. The low 
depolarization purity at 532 nm, if uncorrected, causes a high bias in the perpendicular 

γ1064 = β1064T
2
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top

∫ dz

δ1064 =

NRBperp
layer
∑

NRBpar
layer
∑

T 2
C = e

−2τ c

T 2
lay =1− S ×γ1064



	 20 

backscatter and depolarization ratio at 532 nm, as well as a low bias in the 1064/532 
backscatter color ratio. 
 
A separate measurement of depolarization ratio is necessary to compare to the CATS 
measurements at both 1064 and 532 nm and estimate the PGR2 term. The Cloud Physics 
Lidar (CPL; McGill et al. 2002) is an airborne elastic backscatter lidar system that flies 
aboard the NASA ER-2 high altitude aircraft and operates at 1064, 532, and 355 nm 
wavelengths. Depolarization is resolved using the 1064 nm channel and cloud optical 
properties are retrieved using the 1064 and 532 nm channels (McGill et al. 2003). CPL 
flew aboard the ER-2 during the month of February 2015 out of Palmdale, CA. During 
this time, the ER-2 flew under the ISS track on four occasions. One such flight on 22 
February occurred during local nighttime hours and included observations of dense ice 
clouds along the ISS track. Figure 3.3 shows the ISS track in black, nearly parallel to the 
California coastline and the ER-2 track in red, both of which intercept ice clouds (light 
tan and blue colors). The ER-2 flew about a 30-minute segment below the ISS in which 
CPL and CATS collected near-coincident data. 
 

 
Figure 3.3. The tracks for the ISS and NASA ER-2 near the coast of California on 22 February 2015. 

 
The time of closest coincidence occurs at 03:49:26 UTC near 32.0 degrees latitude as 
both instruments observe a dense ice cloud, as shown in the 1064 nm attenuated total 
backscatter data in in Figure 3.4 for both CPL (a) and CATS (b). The estimate of the 
second PGR term relies on two assumptions: 

1) The spectral depolarization ratio, defined as the ratio of depolarization ratio at 
1064 nm to depolarization ratio at 532 nm, is unity for dense ice clouds. 
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2) The CPL 1064 nm depolarization ratios and thus attenuated perpendicular 
backscatter measurements are accurate to within 3%, which is the estimated 
crosstalk between polarization detector channels measured for the CPL 
instrument. 

Under these two assumptions, the CPL 1064 nm attenuated perpendicular backscatter 
should be equivalent to the CATS attenuated perpendicular backscatter measurements at 
both 532 and 1064 nm for dense ice clouds. 
 

 
Figure 3.4. The 1064 nm attenuated total backscatter data for both CPL (a) and CATS (b) for the segment 
of the ER-2 flight along the ISS track on 22 February 2015. The red box denotes the profiles averaged to 
create Figure 3.3. 
 
Figure 3.5 shows the mean attenuated perpendicular backscatter data for the profiles 
highlighted in the red box in Figure 3.4 for CPL 1064 nm (blue) and CATS RFOV 532 
nm (green) and 1064 nm (red), after the CATS data has been normalized to Rayleigh 
(Section 3.2.5) and the PGR1 term has been applied to the data. The CPL 1064 nm (blue) 
and CATS RFOV 1064 nm (red) profiles agree very well within the dense ice cloud. 
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However, the CATS RFOV 532 nm (green) profile is higher than both the 1064 nm 
profiles. A ratio of about 0.646 must be applied to the CATS 532 nm perpendicular 
backscatter profile (purple) to obtain a spectral depolarization ratio of 1.0 for the dense 
ice cloud. Thus, the PGR2 term for RFOV 532 nm is 0.564. Similarly, the LFOV 532 nm 
PGR2 term is computed using this near-coincident dataset. 
The CATS Version 2-04 data release included these PGR terms, which significantly 
reduced the high biases in CATS 532 nm attenuated total backscatter and depolarization 
ratio. However, the statistical analysis of these parameters for cirrus clouds still yielded 
values 10-20% higher than those observed in the CATS 1064 nm data and over 10 years 
of CPL data at 1064 nm. This was largely due to uncertainties of as much as 15% in the 
computed PGR term. These values have been updated for V2-06 based on more statistical 
samples of coincident CPL and CATS data, reducing the PGR term uncertainties to 4.5% 
and thus minimizing the higher biases in the 532 nm attenuated total backscatter and 
depolarization ratio to 5-10%. 
 

 
Figure 3.5. The mean attenuated perpendicular backscatter data for the profiles highlighted in the red box 
in Figure 3.4 for CPL 1064 nm (blue) and CATS RFOV 532 nm (green) and 1064 nm (red). The CATS 
RFOV 532 nm data multiplied by 0.646 is shown in the purple profile.  
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3.2.4 Stratospheric Scattering Ratios 
 
The CATS calibration coefficients are computed by normalizing the normalized relative 
backscatter signal with respect to a modeled molecular backscatter signal over a set 
altitude range of 23 to 27 km. This altitude regime was selected because the CATS data 
frame is restricted to an upper limit of 28 km above mean sea level and tropical cirrus and 
volcanic plumes typically extend as high as 18 and 22 km respectively (although the later 
depends on the magnitude of each volcanic eruption). Although the aerosol loading in 
this region is generally less than would be found in the lower stratosphere, it is not free of 
aerosol contamination. Thus to accurately normalize the NRB signal to the molecular 
backscatter model, the aerosol loading must be characterized by a spatially and 
temporally varying ratio of total backscatter to molecular backscatter, referred to as the 
scattering ratio (R) and defined as: 
 

Rλ (r) =
βtot (r)T

2
tot (r)

βM (r)T
2
M (r)T

2
O3
(r) 	 	 	 	 	 	 											Eq. 3.21 

The 532 nm scattering ratios in the CATS calibration region are estimated using the 
CALIPSO V4 Level 1 data. Monthly HDF files are provided by the CATS LaRC team 
every 15 days that include the profiles of the 30-day mean, median, standard deviation, 
and error of the 532 nm scattering ratio between 22 and 28 km (180 m bins) and between 
54 S and 54 N degrees latitude at 2 degree latitude increments. The scattering ratio varies 
by latitude and altitude, with values as high as 1.22 in the lower stratosphere (22 km) near 
the equator as shown in Figure 3.6 for February 2007. The most recent monthly HDF file 
is used to derive the 532 scattering ratio in the CATS calibration algorithm and to 
estimate the 1064 nm scattering ratio using the equation: 

R1064 (r) =1+
χ1064 (βM ,532 (r)R532 (r)−1)

βM ,1064 (r)
	 	 	 	 											Eq. 3.22 

where βm at 532 and 1064 nm are the Rayleigh backscatter model computed as shown in 
section 3.2.2 and χ1064 is the backscatter color ratio defined as (Hair et al. 2008): 
 

χ1064 =
βP,1064 (r)
βP,532 (r)

= 0.40 		 	 	 													 	 	 											Eq. 3.23 

The application of the 532 and 1064 nm scattering ratios will be discussed in the next 
section. 
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Figure 3.6. The mean CALIPSO scattering ratios for February 2007 for various altitude bins between 22 
and 28 km.  
 
3.2.5 Calibration at 532 and 1064 nm Wavelengths 
 
Once the ozone transmission, Rayleigh scattering, polarization gain ratio, and 
stratospheric scattering ratios have been computed, the next step in the calibration of 
CATS data is to apply these parameters to the CATS data. The perpendicular NRB at raw 
resolution is multiplied by the PGR at both the 532 and 1064 nm wavelengths. The total 
NRB signal at both wavelengths, derived by adding the perpendicular and parallel signals 
(NRBperp + NRBpar), is then divided by both the ozone transmission and stratospheric 
scattering ratio of the corresponding wavelength as a function of height. Note that the 
stratospheric scattering ratio is applied to the data only in the calibration routine and not 
to the data products reported in the L1B files. This CATS calibration-ready NRB signal is 
averaged typically to 4 minute segments at night and 46 minute segments during daytime 
operation to create mean profiles of the calibration-ready NRB in the calibration region 
of 23-27 km. 
 
The 532 and 1064 nm CATS calibration coefficient (C) profiles at each segment are 
derived by normalizing the mean calibration-ready NRB signal (βCN) to the mean 
molecular backscatter signal (βMT2

MT2
O) in the calibration region (Russell et al. 1979, 

Del Guasta 1998, McGill et al. 2007, Powell et al. 2009), as shown in the equation 
below: 

C! r =  
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	 	 	 	 	 											Eq. 3.24 



	 25 

 
The final calibration coefficient at each segment (typically 4 mins for night, 46 mins for 
day) is simply the mean of the calibration coefficient profile from 23 to 27 km. For 
nighttime conditions, this provides 7-20 calibration coefficients per granule compared to 
only 1 per daytime granules. The final calibration constant is computed by either 
calculating the mean of the calibration coefficient data points in each granule or by a 
linear fit (pre-determined by Mode and SNR), as shown in Figure 3.7. If the calibration 
coefficient at a specific segment does not stay within threshold values, it is not used in 
the average or fit. In daytime granules, it is possible that no calibration coefficients meet 
these threshold values. When this occurs, a default calibration constant is set for the 
entire granule based on historical data and/or manual normalization to the modeled 
Rayleigh signal. It should be noted that the CATS 1064 nm calibration constant is also 
derived using the 532 nm signal and backscatter from ice clouds, similar to CALIPSO at 
1064 nm (Vaughan et al. 2010), but is not used operationally. This technique is only used 
for research purposes by the CATS team to compare the two 1064 nm calibration 
techniques. 
 

 
Figure 3.7. The 532 nm RFOV calibration coefficients (green) computed during a nighttime granule on 25 
Feb. 2015 around 08 UTC. The linear fit apply to the data (black solid line) is the calibration constant 
applied to the backscatter data. The dotted black line is the default value that would be used if the 
calibration coefficients were not within thresholds. 
 
There are two main types of error in the CATS calibration constant: systematic error and 
random error. The systematic error in the CATS calibration constant is derived similar to 
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the systematic error in the CALIPSO calibration (Reagan et al. 2002, Powell et al. 2009). 
This systematic error has four sources: 

1) Error in the stratospheric scattering ratios provided by CALIPSO (ΔR) 
2) Error in the molecular backscatter coefficient derived from the GMAO data (ΔβΜ) 
3) Error in the background transmission from molecules and ozone in the 

atmosphere (ΔT2) 
4) Errors induced by non-ideal optical performance of the CATS lidar system 

(ε+a+c). This error can be effectively reduced by instrument corrections. 
Thus the total relative systematic error in the calibration constant is defined as: 
 
!!
! !"!

!
= !!
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!
+ (ε + a + c)!         Eq. 3.25 

 
and is estimated to be 5%. The latter 3 terms are constant over time, but the error in the 
stratospheric scattering ratio is computed for each monthly HDF file described in section 
3.2.4 and varies by season and volcanic activity. 
 
The random error in the calibration constant results from normalizing the 532 and 1064 
nm signals to the modeled molecular signal and is dominated by noise in the lidar signal. 
This error can be estimated by determining the variability of the intermediate calculated 
coefficients (𝐶𝑖) computed at each averaging segment (4 minutes for nighttime data) that 
are averaged to produce the final calibration constants. As described above, the 
intermediate calibration coefficients are computed for each vertical bin inside the 
calibration zone after averaging horizontally to get a profile for the mean calibration 
segment with 66 vertical bins (60 m bin size). Thus the equation for computing the 
random error is: 
 

ΔC !"# =
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!
                Eq. 3.26 

 
Typical values of the random error for the CATS calibration constant are 5-7% at 532 nm 
and 1064 nm. Thus the total error is derived using the equation: 
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              Eq. 3.27 

 
 
The total error in the CATS calibration constants at 532 and 1064 nm is estimated at 5-
10%. 
 
3.2.6 Attenuated Backscatter 
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The primary product in the CATS Level 1B data is the calibrated backscatter, known as 
the attenuated total backscatter (ATB or γ), which has units of km –1 sr –1 and is defined 
as: 
 

γ r =  !"# !
!

= β! r + β! r T!! r T!! r            Eq. 3.28 
 
Where C is the calibration constant determined using the algorithm outlined in section 
3.2.5. The attenuated backscatter is also computed for the perpendicular and parallel 
signals using the same calibration constant as the total signal. The primary sources of 
uncertainty in the CATS attenuated backscatter signal are the calibration constant and 
signal noise. Thus if the calibration constant is accurate, the CATS ATB profiles should 
compare favorably with the Rayleigh backscatter model, as shown in Figure 3.8. 
 
 

 
Figure 3.8. The 2-minute mean profiles of the CATS ATB signal at 1064 (a) and 532 (b) for both the 
RFOV (red) and LFOV (blue) for data on 22 February 2015. These profiles compared favorably with the 
modeled Rayleigh profiles (black) for each wavelength and field-of-view, demonstrating that the data is 
well calibrated. 
 
4.0 Overview of Vertical Feature Mask Algorithms 
 
There will be two CATS Level 2 products and therefore two vertical feature mask 
algorithms. The CATS Heritage Level 2 products (Rodier et al. 2015) are created when 
CATS L1B files are run through the CALIPSO L2 algorithms to provide continuity in the 
algorithms used for the lidar climate record. These algorithms are outlined in detail in the 
CALIPSO ATBD (Vaughan et al. 2005) and in numerous publications (Hu et al. 2009, 
Liu et al. 2009, Omar et al. 2009, Vaughan et al. 2009, Young et al. 2009), so they will 
not be discussed in this document. The CATS Operational L2 products are produced 
using new operational CATS L2 algorithms, which will include new capabilities that 
correspond to new instrument technology such as spectral depolarization and high 
resolution 1064 nm data. These CATS Operational vertical feature mask algorithms will 
be outlined in the sections to follow in future releases. 
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The CATS operational vertical feature mask algorithms were designed based on CPL and 
CALIPSO algorithms, as well as the performance of the CATS L1B data products. The 
CATS Mode 7.1 backscatter signal is more robust at 1064 nm than 532 nm. The 
minimum detectable backscatter for Mode 7.1 for cirrus clouds at 12 km and horizontal 
resolution of 5 km are shown in Table 4.1. The CATS 1064 nm signal at both night and 
day has a much lower minimum detectable backscatter than 532 nm. This is attributed to 
the fact that the laser is outputting more energy at 1064 nm (1.40 mJ compared to 0.88 
mJ at 532 nm). Additionally, both CATS wavelengths in daytime conditions have lower 
signal to noise ratio (SNR) and higher minimum detectable backscatter for Mode 7.1 than 
nighttime. The poorer performance during daytime is due to solar background noise, 
typically an issue for daytime operation of any lidar.  
 
Table 4.1. Minimum Detectable Backscatter: CATS Mode 7.1, 5km (hori.) and 60 m 
(vert.), for cirrus clouds at 15 km 

Data Type Backscatter (km-1 sr-1) 
CATS 1064 Night 1.80E-4 ± 0.49E-4 
CATS 532 Night 1.00E-3 ± 0.54E-3 

CATS 1064 Day 7.60E-3 ± 0.24E-3 
CATS 532 Day 2.20E-2 ± 0.35E-2 

 
Unlike the Mode 7.1 data, where the 532 and 1064 nm signals are comparable, the Mode 
7.2 532 and 1064 nm signals are very different. Mode 7.2 data at 532 nm is noisy due to 
issues with stabilizing the seeded laser (laser 2). Since the frequency stability is poor on 
laser 2, it is not aligned properly with the CATS etalon causing very weak signal 
transmission. Unfortunately we do not have the necessary controls to fix the problem, so 
we recommend averaging the data to at least 5 km (roughly 14 raw 20 Hz profiles) when 
analyzing the 532 nm data. 
 
Table 4.2. Minimum Detectable Backscatter: CATS Mode 7.2, 5km (hori.) and 60 m 
(vert.), for cirrus clouds at 15 km 

Data Type Backscatter (km-1 sr-1) 
CATS 1064 Night 5.00E-5 ± 0.77E-5 
CATS 532 Night 1.60E-2 ± 0.84E-3 

CATS 1064 Day 1.30E-3 ± 0.24E-3 
CATS 532 Day 3.80E-2 ± 1.05E-2 

 
Due to the signal transmission issues at 532 nm, laser 2 was thermally tuned to increase 
the laser energy at 1064 nm to 2 mJ per pulse. Thus the 1064 nm signal in mode 7.2 is 
very robust, with higher SNR and lower minimum detectable backscatter (5.00E-5 km –1 
sr –1) than the Mode 7.1 data (Table 4.2). Thus, the 1064 nm data is utilized heavily in the 
vertical feature mask algorithms and for any analysis that is wavelength-independent (i.e. 
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layer detection, relative backscatter intensity). More assessment of the L1B data product 
performance, including comparisons with CPL and CALIPSO, will be presented in future 
publications. 
 
4.1 Atmospheric Layer Detection 
 
The CATS layer detection is performed following the methodology described in the 
CALIOP Algorithm Theoretical Basis Document (ATBD; Vaughan et al. 2005). It is a 
threshold-based layer detection method that uses the 1064 nm attenuated scattering ratio, 
unlike the CALIPSO algorithm that uses 532 nm. A threshold for each profile is 
calculated from range-variant and range-invariant sources of noise. For an exhaustive 
description of the details of the layer detection method please see Section 3.2 of the 
CALIOP ATBD and Vaughan et al. 2009 (Fully automated analysis of space-based lidar 
data: an overview of the CALIPSO retrieval algorithms and data products). 
 
There are some key differences between the CALIOP layer detection algorithm and 
CATS layer detection algorithm. The CATS algorithm only performs layer detection at a 
single horizontal resolution of 5km horizontal (60m vertical). The CALIOP algorithm 
will successively run the profile scanner at coarser and coarser horizontal resolutions 
ranging from 5 km to 80 km in order to detect increasingly tenuous layers (Vaughan et al. 
2009). The CATS false positive rejection scheme, like CALIOP’s, utilizes the feature-
integrated backscatter (FIB) of layers as a criterion for rejecting layers. However, unlike 
the CALIOP scheme, the CATS scheme also takes into account the horizontal persistence 
of layers (Vaughan et al. 2009). If both a horizontal persistence test and a FIB test are 
failed then the layer is rejected. The FIB test checks whether the calculated FIB of a layer 
is less than a certain threshold.  
 
The CATS horizontal persistence test is the more complex part of the false positive 
rejection algorithm. For a given layer detected within a single profile, a box is created 
around that layer that includes adjacent profiles. If there are a certain number of layers 
detected within the box, within adjacent profiles, the layer is considered horizontally 
persistent and passes the test. If there are less a certain number of layers detected within 
the box, within adjacent profiles, then the layer fails the horizontal persistence test. The 
diagram in Figure 4.1 demonstrates how the horizontal persistence test works. Each 
column represents a lidar profile. Each box represents a lidar bin. A blue box represents 
that a layer was detected in that bin. In any given profile, consecutive vertical blue bins 
are considered a single layer. Consider the layer in the center of the red box. The red box 
represents the region used to test for horizontal persistence. In this scenario, the layer in 
the red box would fail the horizontal persistence test because there are no other detected 
layers within the red box. The size of the red box and the number of neighboring layers 
required are adjustable in a configuration file for the algorithm. 
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Figure 4.1. Conceptual diagram of horizontal persistence test for layer false positive rejection. 
 
 
For CATS, the layer detection is performed using the 1064 nm backscatter signal for two 
main reasons: 

1) The CATS 1064 nm minimum detectable backscatter is lower than 532 nm, 
making it a better option for more accurate layer identification (Tables 4.1 and 
4.2). 

2) For absorbing aerosols, the absorption optical thickness increases with decreasing 
wavelength. This effect reduces the backscattered signal at 532 nm with respect to 
1064 nm, such that the 532 nm backscatter is not sensitive to entire vertical extent 
of the aerosol layer [Torres et al., 2013; Jethva et al., 2014; Liu et al., 2014]. 
Because the 1064 nm wavelength is only minimally affected by aerosol 
absorption, the vertical extent of the absorbing aerosol layer is more fully 
captured from 1064 nm backscatter profiles rather than those from 532 nm. 

Since CATS can detect the full vertical extent of the aerosol layer above the cloud, it is 
extremely important that the algorithm also distinguish these as two separate layers. 
 
The CATS layer detection algorithm includes a routine to identify clouds embedded 
within aerosol layers. The CALIOP algorithm does not include this capability. The CATS 
cloud-embedded-in-aerosol routine, or CEAL, only considers layers below a certain, 
configurable altitude. This altitude (operationally set to 6 km) is based on the assumption 
that the large majority of clouds embedded within aerosol layers will be confined to the 
lower part of the troposphere. For each layer under consideration a threshold is calculated 
from the median attenuated backscatter of the layer and a threshold factor. The threshold 
is equal to the median attenuated backscatter of the layer multiplied by the threshold 
factor. The threshold is compared to the maximum attenuated backscatter of the layer. If 
the maximum is greater than the threshold, then a cloud boundary search is conducted as 
follows: 

1. From the bin of the maximum, a search begins upward (altitude-wise) bin by bin 
until 2 conditions are met: the attenuated backscatter value is below the threshold 

Al
ti
tu
de
	

Horizontal	distance	



	 31 

and the slope of backscatter (with respect to search direction) reverses a certain 
number of times.  

2. This bin is assigned as the top of the cloud layer.  
3. The base of the cloud layer is found analogously by searching downward from the 

maximum until the same conditions are met.  
CEAL can identify up to 2 clouds within a single combined cloud-aerosol layer. Regions 
of the original candidate layer outside of the identified clouds are considered separate 
(presumably aerosol, although no typing is performed by the CEAL routine) layers as 
long as they have a certain minimum vertical thickness, otherwise they are absorbed into 
the adjacent cloud layers. 

 
Figure 4.2. Four examples of the CEAL routine applied to profiles containing clouds embedded in aerosol 
layers. The horizontal, colored lines denote the vertical boundaries of the layers identified by the CEAL 
routine (first layer is pink,  second layer is green, third layer is light blue, fourth layer is dark blue). Each 
uniquely identified layer gets a unique color. In other words the colors are simply a visual aid for the 
purpose of making the layers easier to see. 
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Figure 4.2 shows four examples of the CEAL routine applied to different profiles 
containing clouds embedded in aerosol layers. Figure 4.2A shows a PBL cloud at the top 
of an aerosol layer. Figure 4.2B shows a cloud embedded within a PBL aerosol layer. 
Figure 4.2C shows two clouds embedded in PBL aerosol. Figure 4.2D shows a cloud 
embedded in a geometrically thick dust layer. In all these examples the sub-layers were 
all identified as a single layer before applying the CEAL routine.  
 
4.2 Cloud-Aerosol Discrimination 
 
Retrievals of cloud and aerosol optical properties are the staple of the CATS Level 2 data 
products. The accuracy of these products depends primarily on the accuracy of the 
extinction-to-backscatter ratio, also known as the lidar ratio, which in turn requires 
accurate classification of atmospheric layers. Once the layers have been identified, the 
next step in the CATS L2 processing is cloud– aerosol discrimination (CAD). The CATS 
CAD algorithm is a multidimensional probability density function (PDF) technique that 
is based on the CALIPSO algorithm (Liu et al. 2009). The PDFs were developed based 
on CPL measurements obtained during over 11 field campaigns and 10 years. Table 4.3 
shows the dates and locations of all 11 projects. In total, over 1.6 million cloud layers and 
nearly 1.8 million aerosol layers were included in the dataset, which was limited to the 
top layer in any given profile. CPL algorithms classify atmospheric layers into four 
categories: ice clouds, liquid water clouds, PBL aerosols, and elevated aerosols. 
Frequency plots of layer-integrated attenuated backscatter at 1064 nm, layer-integrated 
depolarization ratio at 1064 nm, layer-integrated attenuated backscatter color ratio, and 
mid-layer altitude are useful for discriminating clouds and aerosols. Nearly all layers with 
a layer-integrated attenuated backscatter at 1064 nm greater than 0.03 sr-1 are either liquid 
water clouds or ice clouds. Also, features with a mid-layer altitude greater than 8.0 km 
and layer-integrated depolarization ratio at 1064 nm greater than 0.35 are ice clouds. 
Finally, features with a layer-integrated attenuated backscatter color ratio greater than 1.0 
are typically clouds, with the exception of some elevated aerosols (red) that are likely 
large dust particles. 
 
Differences in cloud and aerosol optical and physical properties are used to classify 
layers as a cloud or aerosol. The algorithm is driven by a probability function where 
PDFC and PDFA are the multidimensional PDFs, respectively, for clouds and aerosols. 
For CATS, there are three PDFs used in each mode with attributes i. The performance of 
the CATS CAD is limited to the amount of overlap between clouds and aerosols in the 
PDFs. Adding more attributes, or dimensions, to the PDFs will result in a smaller overlap 
and better classification of clouds and aerosols (Liu et al. 2004). Since the CAD 
algorithm is employed after the computation of Level 1B data and before retrievals of 
optical properties (i.e. extinction, optical depth), we are limited in cloud/aerosol 
properties to use in the PDFs. Measured cloud/aerosol properties available include layer 
altitudes and thickness, attenuated backscatter, depolarization, and attenuated backscatter 
color ratio (1064/532-nm). Ancillary data, such as mid-layer temperature can also be 
utilized. Additionally, data quality, computing time, and ancillary data rates must be 
considered when selecting attribute dimensions for operational PDFs.  
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Table 4.3. CPL Data used to produce the CATS Operational CAD PDFs. 
Project Dates Latitude Range 

THORPEX-Atlantic Nov - Dec 2003 32 to 53 
CC-VEX Jul - Aug 2006 23 to 39 
CLASIC Jun 2007 28 to 40 

TC4 Jul - Aug 2007 0 to 39 
ATTREX11 Nov 2011 6 to 28 

IceAx Apr 2012 31 to 80 
WAVE Sep 2012 33 to 48 
PODEX Jan - Feb 2013 28 to 38 

ATTREX13 Feb - Mar 2013 -10 to 33 
HS3 Aug - Sep 2013 10 to 38 

SEAC4RS Aug - Sep 2013 15 to 49 
 
 
The attributes of the operational CATS PDFs depend on the CATS mode of operations. 
For Mode 7.1, the dimensions are the layer-integrated attenuated backscatter (γ’) at 532 
nm, the layer-integrated attenuated backscatter color ratio (χ’), layer-integrated 1064 nm 
depolarization ratio (δ‘), and the midlayer altitude (Ztop). The probability score (-100 to 
100) for these PDFs are computed using equation 4.1: 

             Eq. 4.1 
 
For Mode 7.2, the same variables are used except the layer-integrated attenuated 
backscatter color ratio is replaced with layer thickness (ΔZ) and the layer-integrated 
attenuated backscatter at 1064 nm is utilized because the 532 nm signal strength is weak 
(section 4.0).  
 
The main objective of the CATS operational CAD algorithm is to compute the CAD 
score, which is an integer value ranging from -10 to 10 for each atmospheric layer. Table 
4.4 illustrates that the sign of the CAD score identifies a layer as either cloud (positive) or 
aerosol (negative), while the magnitude of the CAD score represents the confidence in 
our classification. A value of 10 indicates complete confidence that the layer is a cloud, 
while -10 indicates the accurate classification of an aerosol layer. When the CAD score 
equals 0, the layer is just as likely to be a cloud as it is an aerosol, and thus the 
classification is undetermined. If the optical and physical properties of the layer are 
considered invalid for clouds and aerosols, these layers are assigned a CAD score of -99. 
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Table 4.4. The interpretation of the CATS CAD Score reported in the L2 data products. 
Layer Type CAD Score 

Cloud 1 to 10 
Aerosol -10 to -1 

Undetermined 0 
Bad Data -999 

 

 
Figure 4.3. A flowchart of the CATS version 1 operational CAD algorithm. 

 
The flow of the CATS operational CAD algorithm is shown in Fig. 4.3. First, the CAD 
algorithm computes the layer products, which include γ’ at both 532 and 1064 nm, χ’, δ‘ 
at 1064 nm, Zmid, and Tmid. Before classifying an atmospheric layer, the operational CAD 
algorithm declares the layer invalid if the γ’1064 is less than 0. Then, the algorithm 
identifies high confidence cloud layers (CAD score = 10) as those layers with a γ’1064 is 
greater than 0.03 sr-1. For Mode 7.1 data, high confidence cloud layers are also classified 
if the χ’ is greater than 1.0. No aerosols layers identified in the CPL data were found 
above these threshold values. Very few aerosol layers are also found below temperatures 
of -20 C, with the exception of volcanic plumes. In the first year of CATS data, volcanic 
plumes observed has low depolarization ratios (less than 0.15), typical of plumes that 
consist mostly of SO2. If the Tmid is less than -20 C and the δ’1064 is greater than 0.27, the 
layer is classified as a high confidence cloud (most likely made of ice particle) and the 
CAD score is set to 10.  
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If a layer does not meet any of these criteria, then the PDF technique is used to determine 
whether the layer is an aerosol or cloud. The PDFs are employed to compute the CAD 
score that is reported within the CATS L2 products using equation 4.2.  
 

          Eq. 4.2 
 
Unlike the CALIPSO CAD algorithm, the CATS version 1 operational CAD method 
does not test for horizontally oriented ice crystals. In initial assessments, clouds 
containing high amounts of horizontally oriented ice crystals are not observed as 
commonly in the CATS data as in the CALIPSO data, possibly do to the orbital 
environment of the ISS. More testing will be conducted to ensure that these phenomena 
are infrequent, and the CATS CAD algorithm will be adjusted accordingly in future 
versions. 
 
Initial testing of the CATS CAD algorithm detected several biases that are corrected once 
the steps in Figure 4.3 are complete. CATS has observed several volcanic plumes during 
its first year on orbit. These plumes are typically located in the upper troposphere or 
lower stratosphere, and have weak backscatter and depolarization signals. Thus, any layer 
with a base altitude greater than 18 km is classified as an aerosol and assigned a CAD 
score of -10, since the ISS orbit does not travel to latitudes higher than 51 degrees where 
CATS would observed Polar Stratospheric Clouds (PSCs). Additionally, any layer with a 
base altitude greater than 10 km, δ’1064 less than 0.25, and γ’1064 less than 0.01 sr-1 is also 
classified as an aerosol layer (CAD score = -8). The CAD algorithm also has difficulty 
distinguishing optically thin dust plumes lofted into the mid to upper troposphere from 
optically thin ice clouds, since both these layers are depolarizing. To account for this 
bias, any cloud layer with a γ’1064 less than 0.03 sr-1, δ’1064 is greater than 0.20 and Tmid 
greater than 0 C is reclassified as an aerosol layer with a CAD score of -5. Also, a CAD 
score of 3 is assigned to any aerosol layer with a CAD score of greater than -5 and a Tmid 
less than -20 C. These corrections will not fix every misidentified layer in the CAD 
algorithm, and further testing will likely yield other biases, but they do correct a majority 
of the known biases in the algorithm. The CATS team will continue performance 
assessments of the CAD algorithm and update future versions to improve the accuracy of 
cloud and aerosol identification. 
 
4.3 Cloud Phase 
 
The CATS Cloud Phase (CP) Algorithm, much like the CAD algorithm, employs 
differences in optical and physical properties of ice and liquid water clouds to classify 
layers as a ice clouds or water clouds. The CPL measurements used to create the CAD 
PDFs obtained during over 11 field campaigns and 10 years (Table 4.3) provide a 
statistical basis for the Cloud Phase Algorithm. According to the CPL data, cloud layers 
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with a mid-layer altitude greater than 8.0 km and layer-integrated depolarization ratio at 
1064 nm greater than about 0.25 are ice clouds. However, mid-layer altitudes of cirrus 
clouds depend on many variables, including season and geographic location. Hu et al. 
(2009) and Yorks et al. (2011a) demonstrate the utility of using layer-integrated 
depolarization ratio and cloud temperature for distinguishing liquid water clouds from ice 
clouds. Figure 2 from Yorks et al. (2011a), shown below in Figure 4.4, outlines layer-
integrated volume depolarization ratio (a) and mid-layer temperature (b) thresholds for 
ice clouds (red) and liquid water clouds (blue). 
 

 
Figure 4.4. CPL data from 2003 to 2007 was used to create frequency distributions of layer-integrated 
volume depolarization ratio (a) and mid-layer temperature (b) for cloud layers (Yorks et al. 2011a, Figure 
2).  
 
The flow of the CATS operational CP algorithm is shown in Fig. 4.5. The CPL algorithm 
uses the layer product and CAD as input, and unlike the CAD algorithm, is the same for 
both Modes 7.1 and 7.2. First, high confidence liquid water clouds are classified if the 
cloud layer has a Tmid greater than 0 C and high confidence ice clouds are identified as 
cloud layers with a Tmid less than -20 C. These ice clouds and liquid water clouds are 
assigned a CP score of 10 and -10, respectively. Next, the CP algorithm identifies high 
confidence ice cloud layers as those layers with a δ’1064 is greater than 0.25 or Tmid less 
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than -10 C (CP Score = 9). High confidence liquid water clouds are classified if the cloud 
layer has a δ’1064 is less than 0.15 (CP Score = -9). The remaining layers are determined 
to have lower confidence cloud phase (yellow box) and are assigned a CP Score with an 
absolute value of 7 or less. For these cloud layers, additional parameters and invoked to 
help differentiate cloud phase, such as layer thickness (ΔZ) and the layer-integrated 
attenuated backscatter at 1064 nm. Any remaining cloud layer with a γ’1064 greater than 
0.08 sr-1 is considered a liquid water cloud. Additionally, to identify optically thick but 
physically thin stratus layers that consist of liquid water clouds, a cloud layer with a γ’1064 
greater than 0.03 sr-1and ΔZ less than 1.0 km are classified as liquid water clouds. Figure 
4.6 shows the frequency plot for layer physical thickness using the CPL data described in 
section 4.2. Less than 1% of liquid water clouds identified by CPL have a physical 
thickness greater than 1.5 km. Thus, any remaining cloud layer with a ΔZ greater than 1.5 
km and Tmid less than 0 C are classified as ice clouds. Any cloud layers that do not meet 
these criteria are classified as undetermined. 
 

 
Figure 4.5. A flowchart of the CATS version 1 operational Cloud Phase (CP) algorithm. 
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Figure 4.6. A frequency plots from CPL data between the years of 2003 and 2013 for cirrus (blue), water 
clouds (green), PBL aerosols (purple), and elevated aerosols (red). The frequency is normalized to the total 
number of observations in each category, and plotted for layer physical thickness. 
 
4.4 Aerosol Typing  
 
The CATS aerosol typing algorithms in both modes have heritage from the CALIOP 
aerosol typing algorithm (see Figure 2 from Omar et al. 2009) but with several 
differences: 
 

1. CATS observed inputs from each field of view: 
• Feature Integrated Total Attenuated Backscatter at 1064 nm (γ’1064) (sr-1).  
• Feature Integrated Volume Depolarization Ratio at 1064 nm (δ’1064).   
• Feature Integrated Color Ratio (γ’1064/ γ’532) - Mode 7.1 only 
• L1B Spectral Depolarization Ratio Fraction in Feature (δ1064/ δ532) - Mode 7.1 

only. 
2. Feature integrated total attenuated backscatter and depolarization ratio thresholds 

have been adjusted for wavelength (1064 nm versus 532 nm) and instrument 
minimal detectable backscatter. 

3. The criteria for an elevated aerosol layer has been modified, yet remain similar to 
CALIOP.   CATS criteria for classifying an aerosol layer as elevated requires the 
layer base altitude to be above the surface at least 1.0 km and at least 2 km in 
thickness. 
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4.4.1 Mode 7.1 
 
 

 
Figure 4.7.  CATS Mode 7.1 aerosol typing flow chart. 

 
In CATS mode 7.1, eight aerosol types are identified:  dust, dust mixture, smoke, marine, 
marine mixture, polluted continental, clean/background, and volcanic. Mode 7.1 
incorporates color ratio and spectral depolarization ratio information that is characteristic 
of aerosol regimes from Burton et al. (2012).  The aerosol typing algorithm in mode 7.1, 
shown in Figure 4.7, first designates aerosol layers with a base above 10 km as volcanic. 
The algorithm then identifies strongly depolarizing aerosol layers (δ’1064 > 0.2) 
characteristic of dust at 1064 nm (Burton et al., 2015) for each field of view.  Aerosol 
features with depolarization ratios greater than 0.3 are characterized as dust and those 
between 0.2 and 0.3 are identified as a dust mixture.  For less depolarizing aerosol layers, 
all features with γ’1064 less than 0.0005 sr-1 are classified as clean/background.  Utilizing 
the IGBP land surface type database (Loveland et al., 2000), marine and polluted marine 
aerosol features are defined over water with an inverse color ratio (γ’532/γ’1064) less than 
1.75 (Burton et al., 2012).  Marine is then distinguished from polluted marine aerosol 
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features when the feature fraction of L1B spectral depolarization ratios above 1.75 is less 
than 50% (Burton et al., 2012). Smoke is identified in mode 7.1 when the aerosol layer is 
elevated, and the feature fraction of L1B spectral depolarization ratios above 1.75 is less 
than 50% (Burton et al., 2012), the feature is classified as smoke in mode 7.1. Otherwise, 
the feature is identified as polluted continental.   
 

 
4.4.2 Mode 7.2 
 

 
Figure 4.8.  CATS Mode 7.2 aerosol typing flow chart. 

 
In CATS mode 7.2, seven aerosol types are identified:  dust, dust mixture, smoke, 
marine, polluted continental, clean/background, and volcanic.  The CATS mode 7.2 
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aerosol typing algorithm, shown in Figure 4.8, is more similar to the CALIOP aerosol 
typing algorithm (Omar et al., 2009).  As in mode 7.1, mode 7.2 aerosol typing algorithm 
first designates aerosol layers with a base above 10 km as volcanic.  Then, strongly 
depolarizing aerosol layers are identified and are classified as dust when the 1064 nm 
depolarization ratio (δ’1064) is greater than 0.3 and a dust mixture when the ratio is 
between 0.2 and 0.3 (Burton et al., 2015).  For less depolarizing aerosol layers, smoke is 
identified when the aerosol layer is elevated as defined by the modified CALIOP elevated 
layer criteria outlined in #3.  Again, using the IGBP land surface type database (Loveland 
et al., 2000), non-elevated aerosol features over water with γ’1064 greater than 0.0005 sr-1 
are classified as marine and those less than 0.0005 sr-1 are classified as clean/background.  
Over land, polluted continental aerosol layers are identified when γ’1064 is greater than 
0.0005 sr-1, while those that do not meet this threshold are classified as clean/background.  
It is anticipated that future versions of the CATS mode 7.2 aerosol typing will 
incorporate simulated aerosol distributions from the NASA GEOS-5 model to help guide 
aerosol typing in instances where the observed quantities are characteristic of multiple 
aerosol types.  Additionally, utilizing the GEOS-5 aerosol types in this way permits the 
classification of marine aerosol layers over land in coastal regions which would otherwise 
create boundaries in aerosol types where land meets ocean using land surface type alone 
(Nowottnick et al., 2015).   
 
4.5 Initial Performance Assessment  
 
The vertical feature mask algorithms result in numerous parameters that are reported in 
the L2 profile and layer files. These parameters include physical attributes of the layer, 
such as the layer top and base altitudes, pressures and temperatures, as well as mid-layer 
temperature. They also include an attempt to classify the layer using the aforementioned 
algorithms and create variables such as feature type, feature type score (CAD score), 
cloud phase, cloud phase score, and aerosol type. The integer values of these parameters 
are defined in Table 4.5. 
 
The CATS algorithm team has performed rigorous testing of these algorithms using 
numerous case studies and statistical analysis. Here we demonstrate the performance of 
the algorithms with just a few examples of the performance assessment. More results will 
be illustrated in future publications. The first assessment presented here is a case study as 
the ISS passed along the western coast of Africa on 24 Aug. 2015. The MODIS Terra 
Corrected Reflectance (True Color) from this day shows Saharan Dust in northern Africa 
(orange/light brown colors) and extensive cloud cover in the central part of the 
continental (white) near the equator (Figure 4.9). Fires from biomass burning in southern 
Africa are shown in red, and smoke from these fires is transported off the coast over the 
ocean.  
 
Figure 4.10 shows the CATS 1064 nm attenuated total backscatter for the track shown in 
blue (20:31 to 20:42 UTC) in Figure 4.8. Figure 4.11 shows the CATS vertical feature 
mask, including cloud phases and aerosol types present, for the same scene. Visible in the 
backscatter image are layers with high backscatter between 10-17 km that match the 
cloud cover in the MODIS image. The CATS VFM image (Figure 4.11) shows that the 
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top and base altitudes of these layers are accurately determined and that these layers are 
properly classified as ice clouds (light blue). Also visible in the lower troposphere (0-5 
km) are layers with weaker backscatter, likely aerosols, and very thin layers with 
backscatter greater than 0.01 sr-1 km-1 in the southern latitudes, signatures of liquid water 
clouds. Figure 4.11 demonstrates very accurate detection of layer boundaries and 
classification of these cloud and aerosol layers. Dust layers (orange) are properly 
identified between 0 and 5 km altitude in the more northern latitudes (25.0 to 12.0 
degrees), with the exception of a few profiles with weaker depolarization ratios that are 
classified as smoke (brown). In the southern latitude (0 to 10 degrees), both an elevated 
smoke plume and liquid water clouds (dark blue) are correctly classified. Just north of the 
equator (0 to 5 degrees), the CEAL routine appears to have properly identified a marine 
stratus cloud deck, which consists of liquid water, embedded in a smoke plume (Figure 
4.11). 

 
 
 

 
Table 4.5: Definitions of CATS Vertical Feature Mask Parameters  
Parameter Interpretation 
Feature_Type 0 = Invalid  
		 1 = Cloud 
		 2 = Undetermined 
		 3 = Aerosol 
Feature_Type_Score | 10 | = high confidence 
  | 1 | = low confidence 
  0 = zero confidence 
Cloud_Phase 0 = invalid  
		 1 = water cloud 
		 2 = unknown cloud phase 
		 3 = ice cloud 
Cloud_Phase_Score | 10 | = high confidence 
		 | 1 | = low confidence 
		 0 = zero confidence 
Aerosol_Type 0 = Invalid  
		 1 = Marine 
		 2 = Polluted Marine 
		 3 = Dust 
		 4 = Dust mixture 
		 5 = Clean/Background 
		 6 = Polluted Continental 
		 7 = Smoke 
		 8 = Volcanic 
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Figure 4.9.  The MODIS Terra Corrected Reflectance (True Color) for 24 August 2015 shows Saharan 
Dust in northern Africa, extensive cloud cover in the central part of the continental, and smoke from 
biomass burning just off the coast in southern Africa. Biomass burning fires are shown in red, and the 
CATS track for this day (20:31 to 20:42 UTC) is shown in blue. 
 

 
Figure 4.10 The 1064 nm attenuated total backscatter data for CATS on 24 August 2015 as the ISS passed 
over Africa (track shown in blue in Figure 4.8). 
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Figure 4.11. The CATS vertical feature mask for the blue track shown in Figure 4.8 on 24 August 2015 
that corresponds to the backscatter in Figure 4.9. 
 
 

 
Figure 4.12. The CATS aerosol types for the most commonly observed aerosol layer for the months of 
August and September 2015. The GEOS-5 aerosol speciation along the CATS track for August and 
September 2015 is adjusted to fit the CATS aerosol types. 
 
Initial comparisons between CATS aerosol typing and GEOS-5 aerosol speciation 
demonstrate good agreement. Figure 4.12 shows the CATS aerosol types and GEOS-5 
aerosol speciation mapped to these types for the months of August and September 2015. 
The CATS aerosol typing algorithm accurately identifies dust (yellow and orange) in the 
Saharan desert and Middle East regions, similar to GEOS-5. The CATS smoke layers 
(red) due to wildfires in the northern latitudes and biomass burning over southern Africa 
also agree with the model forecasts. Although the model and CATS aerosol typing agree 
for dust, smoke, and marine (blue), a low bias in detection of polluted continental 
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aerosols (green) compared to the GEOS-5 forecasts is observed. Further assessment of 
the CATS aerosol typing is planned, including comparisons with CALIPSO and GEOS-5 
using several months of data. 
 
5.0 Overview of Geophysical Parameter Algorithms 
 
When attempting to obtain cloud optical depth from a spacecraft or aircraft elastic 
backscatter lidar, two assumptions are required regarding the scattering characteristics of 
the cloud. One of these assumptions is that multiple scattering effects can be reliably 
quantified.  Multiple scattering effects are the modification from the true optical depth 
caused by the increase in detected signal strength due to the portion of the detected 
signal, which has experienced more than one scattering interaction. It is primarily the 
result of photons that are deflected only slightly during the scattering process and stay in 
the field of view.  This is referred to as forward scattering and it serves to decrease the 
perceived optical depth.  Ice particles typically have a very pronounced forward 
scattering component, which will cause multiple scattering effects to be quite significant, 
especially from a spacecraft lidar.  The other assumption is that the value of the 
particulate lidar ratio (Sp) is known.  For a given scattering layer for CATS processing, Sp 
is assumed to be constant.  In cases of transparent cloud layers and no or very weak 
aerosol loading this ratio can be estimated from the lidar data itself, but often the process 
will require externally computed values in order to solve the lidar equation.  The values 
of both of these assumed parameters are determined by the details of the volumetric 
scattering phase function that quantifies light scattering as a function of scattering angle.  
The validity of these strongly relies upon former experience with cirrus lidar observations 
[Spinhirne et al., 1990, 1996]. 
 
5.1 Transmittance Solution to the Lidar Equation 
 
CATS data products report particulate layer lidar ratios, particulate backscatter 
coefficient profiles, particulate extinction coefficient profiles (σp(z)) and particulate layer 
optical depths (τp(z)) for cloud and aerosol layers.  These clouds and aerosol optical 
properties are derived as outlined below and demonstrated in Spinhirne et al. [1980, 
1996], Elouragini [1995] and Marenco [1997].  Please note that transmittance, extinction, 
and optical depths obtained directly from the solution of the lidar equation are actually 
the apparent or effective values [Platt, 1979], which include multiple scattered photons 
and are denoted with the superscript prime.   
       The working lidar equation for a high altitude nadir pointing lidar with photon 
counting detectors has been stated previously in the literature and can be rewritten in the 
following form:          

                                     .                        Eq. 5.1                                               

The raw lidar signal is represented by n(r) as a function of range (r) from the lidar.  D 
represents the dead time correction as a function of signal strength needed when using 
photon counting detectors.  The solar background signal is nb.  Other instrument 
corrections are the near field overlap correction (O) and outgoing energy normalization 
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factor (E).  For CATS, the near field overlap correction factor goes to unity well before 
the 28 km height where processing begins. The system calibration is C and the ozone 
transmission factor is .  The left side of the equation is the calibrated normalized 
attenuated backscatter coefficient corrected for ozone attenuation. The total (particulate 
and molecular) volumetric backscatter coefficient at range r from height z to the 
instrument altitude is denoted by  and the two-way particulate and molecular 
effective transmission factor is expressed as , which is equivalent to 

.  Optical depth is represented by the symbol τ, while the 
subscripts m and p designate molecular and particulate contributions, respectively.  
Furthermore, the influence of the multiple scattering factor (η) on the particulate optical 
depth is described by: 

                                 ,             Eq 5.2 

where σp is particulate extinction.  CALIPSO corrects retrievals of optical properties 
using multiple scattering factors (η) of 0.60 (cirrus), 0.40 (liquid water clouds), and 1.00 
(aerosols) that does not vary with optical depth or range [Young and Vaughan, 2009].  
Initial analysis and comparisons with CPL suggest the η for CATS cloud and aerosol 
layers at 1064 nm is 0.77 for cirrus clouds and 0.60 for liquid water clouds. At 532 nm, 
initial comparisons with CALIPSO cirrus lidar ratios indicate a η of 0.XX for cirrus 
clouds. A η of 1.00 is used for all aerosol layers in version 1.02 of the CATS L2 data 
products, similar to CALIPSO, until more analysis is performed. 
       Since the molecular contribution to the total backscatter and transmission can be 
computed from theory, it is advantageous to separate the scattering terms into 
components, which represent the molecular and particulate contributions independently.  
Assuming      
the lidar equation becomes: 

                                                  .                                         Eq. 5.3                                                      
The following relationships must now be defined: 

                                            
                                       Eq. 5.4   

(S’p assumed to be a constant for each layer), and  

                                           
,                                        Eq. 5.5 

where  and  are the effective particulate and molecular lidar ratios, respectively.  

(z)  and βm(z) can be calculated accurately given the vertical temperature and pressure 
structure of the atmosphere using the GMAO MET data base by selecting atmospheric 
profiles closest in space and in time to the ISS satellite track and the fact that Sm is known 
to be 8π/3 throughout the vertical profile. Once the molecular backscatter coefficient and 
two-way molecular transmission are computed, the equation can be solved for the vertical 
profile of . The true particulate optical depth and extinction profiles can then be 
computed from the values of Sp, , and η.  From the above relationships, we see that: 
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                                         .
                                            

Eq. 5.6 

We can use this relationship to substitute for  in Equation 5.3 to arrive at: 

          Eq. 5.7 

By specifying  as the independent variable and  as the dependent variable, this is a 
first order linear ordinary differential equation; it is a special form of the Bernoulli 
equation. The solution can be found by using the common integrating factor method 

where the integrating factor is , and .  The general solution is: 

                                            ,                         Eq. 5.8 
where the integrand is defined only where particulates are present and  is a constant of 
integration. 
       For convenience, we redefine the coordinate z as the vertical distance from the lidar 
instrument, increasing downward.  If we visualize the situation where the lidar pulse 
encounters layers of particulates after traveling through the molecular atmosphere below 
the satellite and allowing for the effect of the lidar pointing off-nadir at a zenith angle of 
θ, we can define the boundary condition at the top of any particulate layer, , as: 

                                              ,                                     Eq. 5.9 
where zt is the vertical distance to the top of the layer.  If the layer is the first layer 
encountered, the term can be estimated as 1.00.  The calculation of for 

subsequent layers in the atmospheric profile is based on the assumption that  

will be the same as the  value at the bottom of the layer above. 
       So in general, the two-way effective particulate transmission within the particulate 
layer, whether cloud or aerosol, given a lidar zenith angle of θ is 

                             .                     Eq. 5.10 

This forward inversion processing continues throughout the series of particulate layers 
until < T2

L or the signal from the earth’s surface is detected.  T2
L is a limit 

defined through error consideration because the lidar equation becomes unstable as the 
transmission approaches 0.0.  T2

L generally is set between 0.003 and 0.004.   
 
5.2 Determination of Lidar Ratio 
 
An important ingredient of the transmission solution of Equation 5.10 is the effective 
lidar ratio (Sʹp).  There are four basic categories of lidar ratio input sources: constrained, 
unconstrained default, modified default, and opaque.  A discussion of each follows. 
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5.2.1 Constrained Lidar Ratio 
 
When the particulate layer being analyzed is determined to meet the “appropriate criteria” 
for underlying signal loss analysis, an algorithm to calculate an estimate of Sʹp is called.  
If Sʹp is found to be within tolerances, currently between 8-100 sr, it will be used in 
Equation 5.10.  Lidar ratios calculated in this manner are categorized as “constrained”.  
”Appropriate criteria” would be a layer that is transparent (with either a lower layer or the 
earth’s surface sensed) and resides just above pristine air (no aerosols) so that it is 
possible to determine signal loss through the layer.  The clear air zone is restricted to a 
minimum thickness of 0.616 km and maximum of 3 km thickness for CATS processing.  
Ice clouds above 7 km altitude are the most likely candidates.  Under these conditions, an 
estimate of , where zb is the vertical distance to the bottom of the layer, can be 
found using the following equation:  

                             .                          Eq. 5.11 

The designation zc is the distance to the end of the clear air analysis zone.  This method is 
called the signal loss technique.  It compares the integrated attenuated total backscatter 
lidar signal in the presumed clear atmosphere directly below the layer to the estimated 
integrated molecular signal directly below the layer that incorporates the accumulated 
molecular transmission loss starting from the instrument height if no cloud or aerosol 
layer were present.  By referring to Equation 5.9, the boundary condition at the bottom of 
the layer can be defined as . Sʹp can then be calculated 
through an iterative solution from the following equation: 

                                        .                          Eq. 5.12 

The iterative process is started with an initial guess of as it relates to the X parameter, 
with the next iteration using the calculated value until the solution converges to a set 
tolerance (0.08 sr).  A version of this routine initially worked well during automated 
micro-pulse lidar (MPL) processing of aerosols using the calibrated signal to resolve the 
layer optical depth similar to the loss of signal in a cloud [Spinhirne et al., 1999].  This 
routine is also valid for PSCs and enhanced upper tropospheric aerosol layers.  This 
algorithm has been used for over ten years of CPL optical products and the constrained 
lidar ratios derived from this procedure agree favorably with previous studies of lidar 
ratio [Yorks et al., 2011a]. 
 
5.2.2 Default Lidar Ratio 
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For atmospheric layers where  cannot be calculated as described above from the 
transmission loss measurement region due to high aerosol loading or low SNR or 
proximity to the earth’s surface, a value will be assigned for each layer based on the layer 
type as determined in Section 4.0. CATS ice cloud lidar ratios are assigned based on 
relationships with layer integrated depolarization ratio geographic location, as explained 
in Table 5.1, as retrieved from CPL and CALIPSO data [Yorks et al. 2011; 2014]. Values 
of 18.0 sr and 22.0 sr are used for liquid water clouds and clouds of unknown phase, 
respectively [Yorks et al. 2011]. For aerosols, the is assigned from a look-up table 
based on the aerosol type and the values are very similar to those used in CALIPSO, CPL 
and GLAS algorithms, as shown in Table 5.2 [Palm et al. 2002; Omar et al. 2009].  The 
default lidar ratios from these relationships or tables are the true Sp. The effective ratio 
(Sʹp) used in equation (10) is determined as: 
                                                            Sʹp=η Sp,                                                 Eq. 5.13 
where η = 1 for CPL processing, but not for CATS processing.  If this lidar ratio remains 
unmodified through the solution process, we describe this category as “unconstrained 
default” or just default.    
 

Table 5.1: CATS Ice Cloud Default Lidar Ratios 
Location Land Type Sp 

Mid-Latitude Land 24.0 
Mid-Latitude Ocean 30.0 

Tropics Land 28.0 
Tropics Ocean 32.0 

 
Table 5.2: CATS Aerosol Default Lidar Ratios 

Aerosol Type 532 nm 1064 nm 
Marine 25.0 45.0 

Marine Mixture 45.0 40.0 
Dust 45.0 55.0 

Dust Mixture 35.0 45.0 
Clean/Background 55.0 35.0 

Polluted Continental 65.0 35.0 
Smoke 70.0 40.0 

Volcanic 45.0 35.0 
 
 
5.2.3 Modified Default Lidar Ratio 
 
During CATS processing using Equation 5.10 with the default lidar ratio, if the  
term goes below pre-defined set limits before reaching the bottom of the cloud layer, an 
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iterative process is invoked where the effective lidar ratio is reduced by 0.5 sr and the 
layer is reprocessed.  This iterative reprocessing continues until the analysis can reach the 
bottom of the layer or the number of iterations reaches 30.  if the  term goes 
above pre-defined set limits before reaching the bottom of the cloud layer, an iterative 
process is invoked where the effective lidar ratio is increased by 0.5 sr and the layer is 
reprocessed.  This iterative reprocessing continues until the analysis can reach the bottom 
of the layer or the number of iterations reaches 30.  We describe these two conditions as 
the “modified default” category. 
 
5.2.4 Opaque Lidar Ratio 
 
In CATS data processing, opaque layers are treated as special cases of the “constrained” 
lidar ratio algorithm.  For the case of an opaque layer (defined in practical terms as a 
layer that has no layer sensed below it and no ground signal), the particulate transmission 
squared term at the “lidar” cloud bottom, where the lidar signal is extinguished, is set to 
an assumed value consistent with the lidar equation transmission results just before the 
point of opaqueness (where the lidar equation becomes unstable).  Currently, this value of 

 is set to 0.004.  The constrained lidar ratio is then calculated using the 

 value of this special case for input into Equation 5.12.  If the calculated lidar 
ratio value falls within thresholds, it is used; otherwise a default value is sent to start the 
full optical processing of the layer.  The “opaque” lidar ratio and the resultant 
transmission and extinction profiles only apply to the segment of the actual cloud above 
the height where the lidar signal is extinguished.   
 
5.3 Estimates of Geophysical Parameters 
 
In order to obtain the relative density for aerosol and cloud scattering, it is useful to solve 
for the actual particulate backscatter coefficient with attenuation removed (βp).   An 
equation for the backscatter coefficient profile can be obtained by using the results from 
equation (10) as input to equation (3) and rearranging: 

.																										 											Eq. 5.14 

       Once the particulate effective transmission and backscatter profiles for each layer 
have been calculated, it is a straightforward procedure to determine the extinction 
coefficient profiles.  Extinction coefficient for particulates (σp) is defined as the total 
scattered energy at range z.  The final lidar ratio (Sʹp) used in Equation 5.10, regardless of 
the source, now must be corrected for multiple scattering by converting to Sp using 
Equation 5.13.  The extinction profile through the layer is then expressed as a simple 
product of Sp and βp(z): 
                                                       .                                               Eq. 5.15 
Note that multiple scattering has already been accounted for in the calculation of Sp.  
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       The solution to the lidar equation to obtain particulate effective optical depth ( ) at 
any range z from a nadir pointing high altitude lidar is related to the particulate effective 
transmission calculated in Equation 5.10: 

                           or      .                  Eq. 5.16 

The specific method CATS uses to calculate the particulate layer optical depth stems 
from the same transmission solution to the lidar equation, but uses the relationship of the 
extinction coefficient profile in the layer to optical depth.  The final optical depth 
products from these calculations will be the optical depth ( ) for each of the particulate 
layers meeting the analysis criteria: 

                                                          ,                                              Eq. 5.17 
where  and  are the bottom and top locations of the particulate layer, respectively 
and multiple scattering has already been factored out.  The vertical coordinate limits on 
the integration in Equation 5.10 will be determined by the cloud and aerosol boundary 
algorithms described in Section 4.1.  In practice, the integration will be carried out 
starting at the top of the first particulate layer.  Although the whole molecular 
transmission vertical profile starting at the instrument altitude and ending at the bottom of 
the lowest particulate layer sensed will have to be calculated, the particulate transmission 
vertical profile will be produced only inside cloud and aerosol layers.  The boundary 
condition in Equation 5.9 at the top of any secondary layer will involve the particulate 
transmission squared at the bottom of the layer above and the molecular transmission 
squared at the top of the current secondary layer.  
       The attenuation of the pulse energy due to molecular scattering in the intervening 
clear air layers is small in the mid to high troposphere where the optically thin clouds are 
located. The magnitude of the molecular scattering is a significant fraction of lower 
altitude aerosol scattering since the gaseous atmosphere is relatively dense at the low 
altitudes of the boundary layer and the optical density of the aerosol particles are 
typically much lower than that found in cirrus clouds. 
     An estimate of ice water content is calculated based on its relationship with extinction 
and temperature [Heymsfield et al., 2014]. 
                 𝐼𝑊𝐶(𝑧) = 0.303333𝜎(𝑧)𝐷!  , where   𝐷! = 𝑎𝑒!"(!)                       Eq. 5.18 
a and B change with temperature (T in degrees C) as follows: 
for -56 < T(z) < 0,          a=308.4, B=0.0152 
for -71 < T (z)< -56,       a=9.1744e04, B=0.117 
for -85 < T (z)< -71,       a=83.3, B=0.0184. 
IWC profiles are then developed inside each layer.  Ice water path (IWP) for each layer is 
the integration of the IWC profile in the layer. 
                                                            𝐼𝑊𝑃 = 𝐼𝑊𝐶 𝑧 𝑑𝑧!"#$

!"#                                      Eq. 5.19 
      Once the full vertical column of the current profile has been analyzed, the three 
column parameters are calculated: total column optical depth, total aerosol optical depth, 
and total cloud optical depth.  Each layer has been identified as either aerosol or cloud, so 
the sums can be calculated accordingly.  Layer optical depths are summed vertically in 
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the column until a known layer has an invalid OD result.  Then the column totals are set 
to invalid (-9.9).  In those columns where a layer is identified as “opaque”, the total 
optical depth values are set to “-1”. 
 
5.4 Initial Performance Assessment  
 
The optical properties algorithms result in numerous parameters that are reported in the 
L2 profile and layer HDF files. These parameters include optical attributes of the layer, 
such as the layer optical depth, layer 2-way particulate transmission, as well as layer ice 
water path and layer integrated depolarization ratio. They also include an attempt to 
classify the layer optical process using the aforementioned algorithms and create 
variables such as extinction QC flag, lidar ratio selection method flag, and constrained 
lidar ratio flag. The integer values of these parameters are defined in Table 5.3.  Optical 
attributes of the lidar profile include depolarization ratio, extinction, particulate 
backscatter, ice water content, and column optical depth. 
 

Table 5.3: Definitions of CATS Optical Properties Flags 
Parameter Interpretation 

Extinction QC Flag -1=calculation not attempted 
0 = non-opaque layer extinction analysis nominal 

		
1 = layer hit earth’s surface before layer base reached, 

adjusted base 
		 2 = decrease lidar ratio, iteration process successful 

	
	

3 = increase lidar ratio, iteration process successful 
4 = max # of iterations reached, analysis stopped 
5 = saturated before layer base, analysis stopped 
6 = opaque, layer OD= -1, initial lidar ratio accepted 
7 = opaque, layer OD= -1, iteration process successful                    
8 = layer OD out of bounds (invalid) OD= -999.99 
9 = result invalid, final lidar ratio out of bounds 

Lidar Ratio Selection Method 0 = generic default 
		 1 = aerosol lookup table 
		 2 = cloud lookup table 

		

3 = 1064 lidar ratio used 532 OD (for ice clouds only) 
4 = constrained result using clear zone below layer 
5 = constrained result with opaque layer 
6 = lower lidar ratio by max 15sr to reach layer base 
7 = raise lidar ratio by max 15sr to reach layer base 
8 = open slot (not used) 
9 = missing 

Constrained Lidar Ratio Flag 0 = value using nominal “constrained’ procedure 
  1 = useful value using opaque “constrained’ procedure 

  
2 = constrained lidar ratio outside thresholds 
3 = below layer clear zone too small 
4 = clear zone signal error > threshold 
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5 = Tp_sq < allowed min 
6 = Tp_sq at or below 0.0 
7 = 1064 lidar ratio using 532 OD (for ice clouds only) 
8 = Tp_sq at or below 0.0 in opaque cloud conditions 
9 = missing  

 
The CATS algorithm team has performed rigorous testing of these algorithms using 
numerous case studies and statistical analysis. Here we demonstrate the performance of 
the optical properties algorithms with just a few examples of the performance assessment. 
More results will be illustrated in future publications. The assessment presented here is 
the same case study as was presented in Section 4.5 for the vertical feature finder when 
the ISS passed along the western coast of Africa on 24 Aug. 2015.  The optical properties 
correspond to the data displayed in Figures 4.12 and 4.13.  
 
Figure 5.1 shows the CATS 1064 nm particulate backscatter retrieval (with a logarithmic 
color scale) for the track shown in blue (20:31 to 20:42 UTC) in Figure 4.11. Figure 5.2 
shows the CATS extinction retrieval, also with a logarithmic scale, for the same scene. 
Both the particulate backscatter and extinction values match what would be expected 
from the lidar signal strength found in Figure 4.12, where the lidar first scans an extended 
dust layer, then a high cirrus deck with scattered underlying cumulonimbus, followed by 
an elevated smoke layer over an extended thick stratus cloud deck.  Figure 5.3 shows the 
column optical depth results from integration of the extinction profiles in Figure 5.2.  
Values shown are the total aerosol optical depth (red), total cloud optical depth (blue), 
and total column optical depth (green).  An opaque layer in the column will cause the 
total optical depth value to be set to -1, indicating an unknown optical depth over 3.0.  
The scattered cumulonimbus under the cirrus and much of the stratus deck were analyzed 
to be opaque to the lidar.  
 
Figure 5.4 demonstrates the results of using Equation 5.18 to calculate the ice water 
content from relationships with extinction and temperature.  The color bar uses a 
logarithmic scale.  The retrieval is only valid in ice clouds and matches well with 
expected values.   
 

 

 



	 54 

Figure 5.1.  The 1064 nm particulate backscatter retrieval corrected for attenuation for CATS on 24 August 
2015 based on the lidar signals in Figure 4.12 as the ISS passed over first dust, then cirrus, then smoke over 
stratus (see Fig. 4.13). 

 
Figure 5.2. The corresponding 1064 nm extinction retrieval for CATS on 24 August 2015 as the ISS 
passed over first dust, then cirrus, then smoke over stratus during its western Africa pass. 

 
Figure 5.3. The CATS total aerosol optical depth (red), total cloud optical depth (blue) and total column 
optical depth (green) on 24 August 2015 that corresponds to the extinction in Figure 5.2.  Any opaque layer 
will cause the total optical depths to default to -1, indicating an unknown optical depth over 3.0. 
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Figure 5.4. The 1064 nm ice water content retrieval for CATS on 24 August 2015 as the ISS passed over 
western Africa.  The retrieval is only valid in ice clouds. 
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